Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1108–1112 | Cite as

Radiation Conditions near Exoplanets of the TRAPPIST-1 System

  • A. B. StruminskyEmail author
  • A. M. Sadovski
  • M. S. Zharikova


Stellar and galactic cosmic rays (SCR and GCR) are the primary factors influencing the radiation conditions near exoplanets. The GCR spectrum and its time variations are shaped by modulation processes in the astrosphere (the parameters of stellar wind and the local interstellar medium). The estimation of the velocity and density of hot stellar wind in the Parker model demonstrates that their values may change several fold, while the observations reveal that the stellar magnetic fields (and, consequently, the magnetic field of stellar wind) vary by one or two orders of magnitude. Galactic CR may be virtually non-existent near exoplanets of stars with strong magnetic field as a result of the modulation. The radiation conditions are then determined by SCR: the stellar activity, the energy of stellar flares, and the parameters of exoplanet orbits. The estimates of GCR and SCR fluxes near the exoplanets in the habitable zone of the TRAPPIST-1 system, which were obtained using the Parker model and the available data on the stellar magnetic field and activity, are presented below.



This study was supported partially by the Russian Foundation for Basic Research (project no. 16-02-00328) and program P1.7 of the Russian Academy of Sciences.


  1. 1.
    Alfvén, H., On the origin of cosmic radiation, Tellus, 1954, vol. 6, no. 3, pp. 232–253.CrossRefGoogle Scholar
  2. 2.
    Atri, D., Modelling stellar proton event-induced particle radiation dose on close-in exoplanets, Mon. Not. R. Astron. Soc., 2017, vol. 465, id L34.Google Scholar
  3. 3.
    Atri, D., Hariharan, B., and Grießmeier, J.-M., Galactic cosmic ray-induced radiation dose on terrestrial exoplanets, Astrobiology, 2013, vol. 13, no. 10, pp. 910–919.CrossRefGoogle Scholar
  4. 4.
    Balona, L.A., Flare stars across the H-R diagram, Mon. Not. R. Astron. Soc., 2015, vol. 447, pp. 2714–2725.CrossRefGoogle Scholar
  5. 5.
    Berdyugina, S.V., Harrington, D.M., Kuzmychov, O., Kuhn, J.R., Hallinan, G., Kowalski, A.F., and Hawley, S.L., First detection of a strong magnetic field on a bursty brown dwarf: Puzzle solved, Astrophys. J., 2017, vol. 847, id 61.Google Scholar
  6. 6.
    Cliver, E.W., Tylka, A.J., Dietrich, W.F., and Ling, A.G., On a solar origin for the cosmogenic nuclide event of 775 A.D, Astrophys. J., 2014, vol. 781, id 32.Google Scholar
  7. 7.
    Cohen, O., Drake, J.J., and Kóta, J., The cosmic-ray intensity near the Archean Earth, Astrophys. J., 2012, vol. 760, id 85.Google Scholar
  8. 8.
    Fraschetti, F., Drake, J.J., Cohen, O., and Garraffo, C., Mottled protoplanetary disk ionization by magnetically channeled T Tauri star energetic particles, Astrophys. J., 2018, vol. 853, id 112.Google Scholar
  9. 9.
    Garraffo, C., Drake, J.J., Cohen, O., Alvarado-Gómez, J.D., and Moschou, S.P., The threatening magnetic and plasma environment of the TRAPPIST-1 planets, Astrophys. J., 2017, vol. 843, id L33. Google Scholar
  10. 10.
    Gillon, M., Demory, B.O., Van Grootel, V., Motalebi, F., Lovis, C., Cameron, A.C., Charbonneau, D., Latham, D., Molinary, E., Pepe, F.A., Segransan, D., Sasselov, D., Udry, S., Mayor, M., Micela, G., Piotto, G., and Sozzetti, A., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature, vol. 542, no. 7642, pp. 456–460.Google Scholar
  11. 11.
    Grießmeier, J.-M., Tabataba-Vakili, F., Stadelmann, A., Grenfell, J.L., and Atri, D., Galactic cosmic rays on extrasolar earth-like planets. I. Cosmic ray flux, Astron. Astrophys., 2015, vol. 581, id A44.Google Scholar
  12. 12.
    Grießmeier, J.-M., Tabataba-Vakili, F., Stadelmann, A., Grenfell, J.L., and Atri, D., Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications, Astron. Astrophys., 2015, vol. 587, id A159.Google Scholar
  13. 13.
    Hayakawa, S., Origin of Cosmic Rays, Nagoya, Japan: Department of Physics, Nagoya University, 1973.Google Scholar
  14. 14.
    Kovaltsov, G.A., Usoskin, I.G., Cliver, E.W., Dietrich, W.F., and Tylka, A.J., Fluence ordering of solar energetic proton events using cosmogenic radionuclide data, Sol. Phys., 2014, vol. 289, pp. 4691–4700.CrossRefGoogle Scholar
  15. 15.
    Lang, K.R., Astrophysical Formulae, Berlin: Springer, 1980.CrossRefGoogle Scholar
  16. 16.
    Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J.R., Possnert, G., Sigl, M., Svensson, A., Synal, H.-A., Welten, K.C., and Woodruff, T.E., Multiradionuclide evidence for the solar origin of the cosmic-ray events of ad 774/5 and 993/4, Nature Commun., 2015, vol. 6, id 8611.Google Scholar
  17. 17.
    Mekhaldi, F., McConnell, J.R., Adolph, F., Arienz, M. M., Chellman, N.J., Maselli, O.J., Moy, A.D., Plummer, C.T., Sigl, M., and Muscheler, R., No coincident nitrate enhancement events in polar ice cores following the largest known solar storms, J. Geophys. Res., 2017, vol. 122, pp. 11900–11913.Google Scholar
  18. 18.
    Miroshnichenko, L.I. and Nymmik, R.A., Extreme fluxes in solar energetic particle events: Methodological and physical limitations, Radiat. Meas., 2014, vol. 41, pp. 6–15.CrossRefGoogle Scholar
  19. 19.
    Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 1958a, vol. 128, pp. 664–676.CrossRefGoogle Scholar
  20. 20.
    Parker, E.N., Cosmic-ray modulation by solar wind, Phys. Rev., 1958b, vol. 110, no. 6, pp. 1445–1449.CrossRefGoogle Scholar
  21. 21.
    Reiners, A. and Basri, G.A., Volume-limited sample of 63 M7–M9.5 dwarfs. II. Activity, magnetism, and the fade of the rotation-dominated dynamo, Astrophys. J., vol. 710, no. 2, pp. 924–935.Google Scholar
  22. 22.
    Roettenbacher, R.M. and Kane, S.R., The stellar activity of TRAPPIST-1 and consequences for the planetary atmospheres, Astrophys. J., 2017, vol. 851, no. 2, id 77.Google Scholar
  23. 23.
    Sadovskii, A.M., Struminsky, A.B., and Belov, A.V., Cosmic rays near Proxima Centauri b, Astron. Lett., 2018, vol. 44, no. 5, pp. 324–330.CrossRefGoogle Scholar
  24. 24.
    Scherer, K., Fichtner, H., and Stawicki, O., Shielded by the wind: The influence of the interstellar medium on the environment of earth, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 795–804.CrossRefGoogle Scholar
  25. 25.
    Struminsky, A. and Sadovski, A., Stellar cosmic rays in a habitable zone, stars: From collapse to collapse, in Proceedings of a Conference held at Special Astrophysical Observatory, Nizhny Arkhyz, Russia, 3–7 October 2016, Balega, Yu.Yu., Kudryavtsev, D.O., Romanyuk, I.I., and Yakunin, I.A., Eds., San Francisco: Astronomical Society of the Pacific, 2017, p. 105.Google Scholar
  26. 26.
    Tabataba-Vakili, F., Grenfell, J.L., Grießmeier, J.-M., and Rauer, H., Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs, Astron. Astrophys., 2016, vol. 585, id A96.Google Scholar
  27. 27.
    Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Friedrich, M., Kovaltsov, G.A., Solanki, S.K., and Wacker, L., The AD775 cosmic event revisited: The Sun is to blame, Astron. Astrophys., 2013, vol. 552, id L3.Google Scholar
  28. 28.
    Van Grootel, V., Fernandes, C.C., Gillon, M., Jehin, E., Manfroid, J., Scuflaire, R., Burgasse, A.J., Barkaoui, K., Beknown, Z., Burdanov, A., Delrez, L., Demory, B.O., De Wit, J., Queloz, D., and Traud, A., Stellar parameters for TRAPPIST-1, Astrophys. J., 2018, vol. 853, id 30.Google Scholar
  29. 29.
    Vida, K., Kővári, Zs., Pál, A., Oláh, K., and Kriskovics, L., Frequent flaring in the TRAPPIST-1 system—Unsuited for life?, Astrophys. J., 2017, vol. 841, no. 2, id 124.Google Scholar
  30. 30.
    Wheatley, P.J., Louden, T., Bourrie, V., Ehrenreich, D., and Gillon, M., Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1, Mon. Not. R. Astron. Soc., 2017, vol. 465, pp. L74–L78.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. B. Struminsky
    • 1
    Email author
  • A. M. Sadovski
    • 1
  • M. S. Zharikova
    • 1
  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations