Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1029–1036 | Cite as

Halistatt Cycle Subarctic Fennoscandian Temperature and Its Possible Link with Solar Activity

  • M. G. OgurtsovEmail author
  • S. Helama
Article

Abstract

Reconstruction of summer temperature at subarctic Fennoscandia (68°–70° N, 20°–30° E), based on tree-ring data, was compared with three solar activity reconstructions, obtained by means of 14C and 10Be. It was shown that temperature proxy reconstructs well both long-term and short-term temperature variability. Weak, but significant positive correlation between reconstructed temperature (Helama et al., 2010) averaged over 40 years, and solar proxies was found during BC 5495–AD 1895. It was shown that Hallstatt cyclicity (1800–2300 years) is the main common feature in temperature and solar proxies. Possible mechanisms of the solar–temperature link over subarctic Fennoscandia are discussed.

Notes

ACKNOWLEDGMENTS

M.G. Ogurtsov expresses his thanks to the program of the Presidium of RAS no. 7, and to RFBR grants 16-02-00090, 18-02-00583 for financial support. Tree-ring analyses were prepared under the support of the Academy of Finland (no. 251441).

REFERENCES

  1. 1.
    Adolphi, F., Muscheler, R., Svensson, A., et al., Persistent link between solar activity and Greenland climate during the last glacial maximum, Nature Geosci., 2014, vol. 7, pp. 662–666. doi 10.1038/ngeo2225CrossRefGoogle Scholar
  2. 2.
    Beer, J., McCracken, K., and von Steiger, R., Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments, Berlin: Springer, 2012.CrossRefGoogle Scholar
  3. 3.
    Calogovic, J., Albert, C., Arnold, F., et al., Sudden cosmic ray decreases: No change of global cloud cover, Geophys. Res. Lett., 2010, vol. 37, no. 3, L03802. doi 10.1029/2009GL041327CrossRefGoogle Scholar
  4. 4.
    Damon, P. and Laut, P., Pattern of strange errors plagues solar activity and terrestrial climate data, EOS Trans., 2004, vol. 85, no. 39, pp. 370–374.CrossRefGoogle Scholar
  5. 5.
    De Jager, C., Solar forcing of climate: Solar variability, Space Sci. Rev., 2005, vol. 120, pp. 197–241.CrossRefGoogle Scholar
  6. 6.
    Friis-Christensen, E. and Lassen, K., Length of solar cycle: An indicator of solar activity closely associated with climate, Science, 1991, vol. 254, pp. 698–700.CrossRefGoogle Scholar
  7. 7.
    Gagen, M., Zorita, E., McCarroll, D., Young, G.H.F., Grudd, H., Jalkanen, R., Loader, N.J., Robertson, I., and Kirchhefer, A., Cloud response to summer temperatures in Fennoscandia over the last thousand years, Geophys. Res. Lett., 2011, vol. 38, L05701. doi 10.1029/2010GL046216CrossRefGoogle Scholar
  8. 8.
    Gray, L.J., Beer, J., Geller, M., et al., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282CrossRefGoogle Scholar
  9. 9.
    Helama, S., Fauria, M.M., Mielikainen, K., Timonen, M., and Eronen, M., Sub-Milankovitch solar forcing of past climates: Mid and late Holocene perspectives, Geol. Soc. Am. Bull., 2010, vol. 122, pp. 1981–1988.CrossRefGoogle Scholar
  10. 10.
    Kern, A.K., Harzhauser, M., Piller, W.E., Mandic, O., and Soliman, A., Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2012, vol. 329–330, pp. 124–136.CrossRefGoogle Scholar
  11. 11.
    Kirov, B. and Georgieva, K., Long-term variations and interrelations of ENSO, NAO and solar activity, Phys. Chem. Earth, 2002, vol. 27, pp. 441–448.CrossRefGoogle Scholar
  12. 12.
    Kuroda, Y., Deushi, M., and Shibata, K., Role of solar activity in the troposphere–stratosphere coupling in the Southern Hemisphere winter, Geophys. Res. Lett., 2007, vol. 34, L21704. doi 10.1029/2007GL030983CrossRefGoogle Scholar
  13. 13.
    Lockwood, M., Solar change and climate: An update in the light of the current exceptional solar minimum, Proc. R. Soc. London, Ser. A., 2010, vol. 466, no. 2114, pp. 303–329.CrossRefGoogle Scholar
  14. 14.
    Lukianova, R. and Alekseev, G., Long-term correlation between the NAO and the solar activity, Sol. Phys., 2004, vol. 224, pp. 445–454.CrossRefGoogle Scholar
  15. 15.
    Marsh, N. and Svensmark, H., Low cloud properties influenced by cosmic rays, Phys. Rev. Lett., 2000, vol. 85, no. 23, pp. 5004–5007.CrossRefGoogle Scholar
  16. 16.
    Nederbragt, A.J. and Thurow, J., Geographic coherence of millennial-scale climate cycles during the Holocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2005, vol. 221, pp. 313–324.CrossRefGoogle Scholar
  17. 17.
    Ogurtsov, M.G. and Oinonen, M., Evidence of the solar Gleissberg cycle in the nitrate concentration in polar ice, J. Atmos. Sol.-Terr. Phys., 2014, vol. 109, pp. 37–42.CrossRefGoogle Scholar
  18. 18.
    Ogurtsov, M.G., Kocharov, G.E., Lindholm, M., Merilainen, J., Eronen, M., and Nagovitsyn, Yu.A., Evidence of solar variation in tree-ring-based climate reconstructions, Sol. Phys., 2002, vol. 205, no. 2, pp. 403–417.CrossRefGoogle Scholar
  19. 19.
    Ogurtsov, M.G., Lindholm, M., Eronen, M., and Helama, S., Centennial-to-millennial fluctuations in July temperatures in North Finland as recorded by timberline tree-rings of Scots pine, Quat. Res., 2005, vol. 63, no. 2, pp. 182–188.CrossRefGoogle Scholar
  20. 20.
    Ogurtsov, M., Lindholm, M., Jalkanen, R., and Veretenenko, S.V., New evidence of solar variation in temperature proxies from Northern Fennoscandia, Adv. Space Res., 2013, vol. 52, no. 9, pp. 1647–1654.CrossRefGoogle Scholar
  21. 21.
    Palle, E., Buttler, C.J., and O’Brien, K., The possible connection between ionization in the atmosphere by cosmic rays and low level clouds, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 1779–1790.CrossRefGoogle Scholar
  22. 22.
    Rind, D., The Sun’s role in climate variations, Science, 2002, vol. 296, pp. 673–677.CrossRefGoogle Scholar
  23. 23.
    Rind, D., Lean, J., Lerner, J., Lonergan, P., and Leboissitier, A., Exploring the stratospheric/tropospheric response to solar forcing, J. Geophys. Res., 2008, vol. 113, D24103. doi 10.1029/2008JD010114CrossRefGoogle Scholar
  24. 24.
    Soon, W., Herrera, V., Selvaraj, K., et al., A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm, Earth Sci. Rev., 2014, vol. 134, pp. 1–15.CrossRefGoogle Scholar
  25. 25.
    Svensmark, H. and Friis-Christensen, E., Variations of cosmic ray flux and global cloud coverage. A missing link in solar–climate relationships, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, pp. 1225–1232.CrossRefGoogle Scholar
  26. 26.
    Svensmark, H., Bondo, T., and Svensmark, J., Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett., 2009, vol. 36, L15101. doi 10.1029/2009GL038429CrossRefGoogle Scholar
  27. 27.
    Traversi, R., Usoskin, I.G., Solanki, S.K., et al., Nitrate in polar ice: A new tracer of solar variability, Sol. Phys., 2012, vol. 280, pp. 237–254.CrossRefGoogle Scholar
  28. 28.
    Vasiliev, S.S. and Dergachev, V.A., The 2400-year cycle in atmospheric radiocarbon concentration: Bispectrum of 14C data over the last 8000 years, Ann. Geophys., 2002, vol. 20, pp. 115–120.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe Physico-Technical InstituteSt. PetersburgRussia
  2. 2.Central Astronomical observatory at PulkovSt. PetersburgRussia
  3. 3.Natural Resources Institute FinlandRovaniemiFinland

Personalised recommendations