Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 7, pp 846–856 | Cite as

A Comparison of IRI-2016 foF2 Predictions with the Observations at Different Latitudes During Geomagnetic Storms

  • E. Timoçin
  • İ. Ünal
  • Ü. D. Göker
Article
  • 1 Downloads

Abstract

This study investigates the impacts of geomagnetic storms on the performance of the International Reference Ionosphere 2016 (IRI-2016) foF2 predictions at different latitudes during geomagnetically disturbed periods in different seasons of the year 1989 which is around maximum solar activity. For this purpose, hourly foF2 data measured from the ionosonde stations Manila (14.7° N, 121.1° E), Rome (41.8° N, 12.5° E), Argentia NF (47.3° N, 54.0° W) and Uppsala (59.8° N, 17.6° E) that are located at low, middle and high latitudes, and hourly foF2 data calculated from the IRI-2016 for the same locations are used. In our study, a comparison between observational results and that of the IRI-2016 foF2 predictions is made. Planetary geomagnetic activity “3h-Kp” and “3h-ap” indices are used as geomagnetic activity indicators. In order to test the performance of the IRI-2016 for disturbed geomagnetic conditions, the percentile deviations and root mean square errors (RMSE) are calculated using the foF2 data from the IRI-2016 and the ionosonde stations. These analyzes are done for four seasons based on geomagnetic stormy days around equinoxes (March 21, September 23) and solstices (June 21, December 21). Therefore, it is found that during geomagnetically disturbed periods, the IRI-2016 foF2 predictions deviate considerably from the foF2 data taken from the ionosonde stations and this deviation differs according to the seasons and latitudes. The results show that the last version of the IRI model that includes the foF2 storm model is not sufficient to properly represent the real conditions of a disturbed ionosphere and there is still space for improving the IRI model for geomagnetically disturbed conditions.

REFERENCES

  1. 1.
    Adewale, A.O., Oyeyemi, E.O., Adeloye, A.B., and Adedokun, M.B., Ionospheric effects of geomagnetic storms at Hobart and comparisons with IRI model predictions, J. Sci. Res. Dev., 2013, vol. 14, pp. 98–105.Google Scholar
  2. 2.
    Araujo-Pradere, E.A., Fuller-Rowell, T.J., and Codrescu, M.V., STORM: An empirical storm-time ionospheric correction model: 1. Model description, Radio Sci., 2002, vol. 37, no. 5, pp. 1070–1082.Google Scholar
  3. 3.
    Araujo-Pradere, E.A., Fuller-Rowell, T.J., Codrescu, M.V., and Bilitza, D., Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity, Radio Sci., 2005, vol. 40, 1–15.CrossRefGoogle Scholar
  4. 4.
    Batista, I.S., De Paula, E.R., Abdu, M.A., and Trivedi, N., Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes, J. Geophys. Res., 1991, vol. 96, pp. 13943–13952.CrossRefGoogle Scholar
  5. 5.
    Bilitza, D., International reference ionosphere – Status 1995/96, Adv. Space Res., 1997, vol. 20, no. 9, pp. 1751–1754.CrossRefGoogle Scholar
  6. 6.
    Bilitza, D., International Reference Ionosphere 2000, Radio Sci., 2001, vol. 36, no. 2, pp. 261–275.CrossRefGoogle Scholar
  7. 7.
    Bilitza, D., The International Reference Ionosphere: Rawer’s IRI and its status today, Adv. Radio Sci., 2014, vol. 12, pp. 231–236.CrossRefGoogle Scholar
  8. 8.
    Bilitza, D. and Reinisch, B.W., International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 2008, vol. 42, pp. 599–609.CrossRefGoogle Scholar
  9. 9.
    Bilitza, D. and Reinisch, B., Representation of the auroral and polar ionosphere in the International Reference Ionosphere (IRI), Adv. Space Res., 2013, vol. 51, no. 4, pp. 535–696.CrossRefGoogle Scholar
  10. 10.
    Chaitanya, P.P., Patra, A.K., Balan, N., and Rao, S.V.B., Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012, Ann. Geophys., 2015, vol. 33, pp. 997–1006.CrossRefGoogle Scholar
  11. 11.
    Chuo, Y.J., Variations of ionospheric profile parameters during solar maximum and comparison with IRI-2007 over Chung-Li, Taiwan, Ann. Geophys., 2012, vol. 30, pp. 1249–1257.CrossRefGoogle Scholar
  12. 12.
    Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 3, pp. 209–224.Google Scholar
  13. 13.
    Fuller-Rowell, T.J., Rees, D., Quegan, S., Moffett, R.J., and Bailey, G.J., Interactions between neutral thermosphere composition and the polar ionosphere using a coupled ionosphere–thermosphere model, J. Geophys. Res., 1987, vol. 92, pp. 7744–7748.CrossRefGoogle Scholar
  14. 14.
    Fuller-Rowell, T.J., Codrescu, M.V., Moffett, R.J., and Quegan, S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 1994, vol. 99, pp. 3893–3914.CrossRefGoogle Scholar
  15. 15.
    Fuller-Rowell, T.J., Codrescu, M.V., Rishbeth, M.V., Moffett, R.J., and Quegan, S., On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 1996a, vol. 101, pp. 2343–2353.CrossRefGoogle Scholar
  16. 16.
    Fuller-Rowell, T.J., Rees, D., Quegan, S., Moffett, R.J., Codrescu, M.V., and Millward, G.H., A Coupled Thermosphere–Ionosphere model (CTIM), Utah: Utah State Univ., 1996b, pp. 85–140.Google Scholar
  17. 17.
    Fuller-Rowell, T.J., Codrescu, M.V., and Araujo-Pradere, E.A., Capturing the storm-time ionospheric response in an empirical model, in Space Weather (Geophysical Monograph 125), Washington, D.C.: AGU, 2001, pp. 393–402. doi 10.1029/GM125p0393Google Scholar
  18. 18.
    Hernandez, G. and Roble, R.G., Observations of large scale thermospheric waves during geomagnetic storms, J. Geophys. Res., 1978, vol. 83, pp. 5531–5538.CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Singh, A.K., and Lee, J., Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005–2009), Adv. Space Res., 2014, vol. 53, no. 5, pp. 724–733.CrossRefGoogle Scholar
  20. 20.
    Kumar, S., Tan, E.L., and Murti, D.S., Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes, Earth Planets Space, 2015, vol. 67, pp. 42–59.CrossRefGoogle Scholar
  21. 21.
    Mannucci, A.J., Tsurutani, B.T., Iijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, J.U., and Skoug, R., Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 2005 vol. 32, pp. L12S02–L12S06.Google Scholar
  22. 22.
    Matuura, N., Theoretical models of ionospheric storms, Space Sci. Rev., 1972, vol. 13, no. 1. pp. 124–189.CrossRefGoogle Scholar
  23. 23.
    Millward, G.H., Rishbeth, H., Fuller-Rowell, T.J., Aylward, A.D., Quegan, S., and Moffett, R.J., Ionospheric F2 layer seasonal and semiannual variations, J. Geophys. Res., 1996, vol. 101, pp. 5149–5156.CrossRefGoogle Scholar
  24. 24.
    Pietrella, M. and Perrone, L., A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys., 2008, vol. 26, pp. 323–334.CrossRefGoogle Scholar
  25. 25.
    Prölss, G.W., Ionospheric storm effects at subauroral latitudes: A case study, J. Geophys. Res., 1991, vol. 96, pp. 1275–1288.CrossRefGoogle Scholar
  26. 26.
    Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 1993, vol. 98, pp. 5981–5991.CrossRefGoogle Scholar
  27. 27.
    Prölss, G.W., Handbook of Atmospheric Electrodynamics, London: CRC Press, 1995, pp. 120–200.Google Scholar
  28. 28.
    Prölss, G.W., Physics of the Earth’s Space Environment, Berlin: Springer, 2004, pp. 77–444.CrossRefGoogle Scholar
  29. 29.
    Quegan, S., Bailey, G.J., Moffett, R.J., Heelis, R.A., Fuller-Rowell, T.J., Rees, D., and Spiro, R.W., A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: First results on the midlatitude trough and the light-ion trough, J. Atmos. Terr. Phys., 1982, vol. 44, pp. 619–640.CrossRefGoogle Scholar
  30. 30.
    Rangarajan, G.K., Indices of geomagnetic activity, in Geomagnetism, Jacobs, J.A., Ed., London: Academic, 1989, pp. 323–384.Google Scholar
  31. 31.
    Richmond, A.D., Ridley, E.C., and Roble, R.G., A thermosphere/ionosphere general circulation model with coupled electrodynamic, Geophys. Res. Lett., 1992, vol. 19, pp. 601–604.CrossRefGoogle Scholar
  32. 32.
    Rishbeth, H., F-region storms and thermospheric circulation, J. Atmos. Terr. Phys., 1975, vol. 37, pp. 1055–1064.CrossRefGoogle Scholar
  33. 33.
    Roble, R.G., Ridley, E.C., Richmond, A.D., and Dickinson, R.E., A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 1988, vol. 15, pp. 1325–1328.CrossRefGoogle Scholar
  34. 34.
    Schunk, R.W., Sojka, J.J., and Bowline, M.D., Theoretical study of the electron temperature in the high latitude ionosphere for solar maximum and winter conditions, J. Geophys. Res., 1986, vol. 91, pp. 12041–12054.CrossRefGoogle Scholar
  35. 35.
    Schunk, R.W. and Nagy, A.F., Ionospheres, New York: Cambridge University Press, 2000, pp. 11–430.CrossRefGoogle Scholar
  36. 36.
    Wang, X., Shi, J.K., Wang, G.J., and Gong, Y., Comparison of ionospheric F2 peak parameters foF2 and hmF2 with IRI 2001 at Hainan, Adv. Space Res., 2009, vol. 43, pp. 1812–1820.CrossRefGoogle Scholar
  37. 37.
    Wang, S., Huang, S., Fang, H., and Wang, Y., Evaluation and correction of the IRI2016 topside ionospheric electron density model, Adv. Space Res., 2016, vol. 58, no. 7, pp. 1229–1241.CrossRefGoogle Scholar
  38. 38.
    Wrenn, G.L., Time-weighted accumulations a p(τ) and K p(τ), J. Geophys. Res., 1987, vol. 92, pp. 10125–10129.CrossRefGoogle Scholar
  39. 39.
    Wrenn, G.L. and Rodger, A.S., Geomagnetic modification of the mid-latitude ionosphere: Toward a strategy for the improved forecasting of foF2, Radio Sci., 1989, vol. 24, no. 1, pp. 99–111.CrossRefGoogle Scholar
  40. 40.
    Wrenn, G.L., Rodger, A.S., and Rishbeth, H., Geomagnetic storms in Antarctic F region. 1. Diurnal and seasonal patterns in main phase effects, J. Atmos. Terr. Phys., 1987, vol. 49, pp. 901–913.CrossRefGoogle Scholar
  41. 41.
    Yeh, K.C., Lin, K.H., and Conkright, R.O., The global behavior of the March 1989 ionospheric storm, Can. J. Phys., 1992, vol. 70, pp. 532–543.CrossRefGoogle Scholar
  42. 42.
    Zakharenkova, I.E., Krankowski, A., Bilitza, D., Cherniak, I.V., Shagimuratov, I.I., and Sieradzki, R., Comparative study of foF2 measurements with IRI-2007 model predictions during extended solar minimum, Adv. Space Res., 2013, vol. 51, pp. 620–629.CrossRefGoogle Scholar
  43. 43.
    Zhang, M.L., Shi, J.K., Wang, X., Wu, S.Z., and Zhang, S.R., Comparative study of ionospheric characteristic parameters obtained by DPS-4 digisonde with IRI-2000 for low latitude station in China, Adv. Space Res., 2004, vol. 33, pp. 869–873.CrossRefGoogle Scholar
  44. 44.
    Zhao, B., Wan, W., Liu, L., Igarashi, K., Yumoto, K., and Ning, B., Ionospheric response to the geomagnetic storm on 13–17 April 2006 in the West Pacific region, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 88–100.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vocational School of Technical Sciences, Department of Medical Services and Techniques, Mersin UniversityMersinTurkey
  2. 2.Faculty of Education, Department of Science Teaching, İnönü UniversityMalatyaTurkey
  3. 3.Department of Aviation Management, İstanbul Gelişim UniversityİstanbulTurkey

Personalised recommendations