Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 7, pp 857–870 | Cite as

Storm Time Ionospheric-Tropospheric Dynamics: a Study Through Ionospheric and Lower Atmospheric Variability Features of High/Mid and Low Latitudes

  • M. DeviEmail author
  • S. Patgiri
  • A. K. Barbara
  • G. Gordiyenko
  • A. Depueva
  • V. Depuev
  • Yu. Ya. Ruzhin
Article
  • 5 Downloads

Abstract

Geomagnetic storm is one of the major disturbances in Earth’s magnetosphere and its effect on ionosphere is a well studied area, yet there are a few aspects still require attention for possible framing of a reliable comprehensive model associating lower atmospheric variabilities. One of them is the role of storm time coupling mechanisms between high/mid latitudes and equatorial anomaly crest region in modifying ionospheric parameters and their simultaneous effect at the lower altitudes. In this background the paper presents a comparative analysis of the magnetic storm induced effects on the ionosphere for a few events of weak to very strong intensity, covering periods from 2011 to 2015 by utilizing  foF2 data collected at high/mid latitude station of IZMIRAN (55.47° N, 37.30° E, Ф = +50.82°) and mid latitude station Alma-Ata (43.25° N, 76.92° E, Ф = +33.42°) and Total Electron Content (TEC) profiles of Guwahati (26.148° N, 91.73° E, Ф = +12.30°), an equatorial anomaly crest station. The modulation characters in storm time density at the latitudinal zone of study area are presented in association with lower atmospheric variability. In support to the observed variations, the role of storm induced electric field in development process of equatorial anomaly is brought in to ambit of discussion along with possible reason for changes at lower altitudes.

Notes

ACKNOWLEDGMENTS

The authors M. Devi, A.K. Barbara, V. Depuev, A. Depueva, and Yu. Ruzhin acknowledge with thanks the financial support received from the DST, India and RFBR, Russia for partial support received by them through Grant no. 17-55-45094 a_IND. The work of G. Gordiyenko has been supported by the no. 0082/GF4 research grant “Investigate the role of non-stationary geophysical phenomena in the dynamics of the lower and upper atmosphere”.

REFERENCES

  1. 1.
    Abdu, M.A., Major phenomena of the equatorial ionosphere thermosphere system under disturbed conditions, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 13, pp. 1505–1519. doi 10.1016/S1364-6826(96)00152-6CrossRefGoogle Scholar
  2. 2.
    Abdu, M.A., Batista, I.S., Bertoni, F., Reinisch, B.W., Kherani, E.A., and Sobral, J.H.A., Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil, J. Geophys. Res., 2012, vol. 117, A05321. doi 10.1029/2011JA017174CrossRefGoogle Scholar
  3. 3.
    Bagiya, M.S., Iyer, K.N., Joshi, H.P., Thampi, S.V., Tsugawa, T., Ravindran, S., Sridharan, R., and Pathan, B.M., Low-latitude ionospheric–thermospheric response to storm time electrodynamical coupling between high and low latitudes, J. Geophys. Res., 2011, vol. 116, A01303. doi 10.1029/2010JA015845Google Scholar
  4. 4.
    Basu, S., Basu, Su., Rich, F.J., Groves, K.M., MacKenzie, E., Coker, C., Sahai, Y., Fagundes, P.R., and Becker-Guedes, F., Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms, J. Geophys. Res., 2007, vol. 112, A08308. doi 10.1029/2006JA012192CrossRefGoogle Scholar
  5. 5.
    Carter, B.A., Yizengaw, E., Pradipta, R., Retterer, J.M., Groves, K., Valladares, C., Caton, R., Bridgwood, C., Norman, R., and Zhang, K., Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm, J. Geophys. Res., 2016, vol. 121, no. 1, pp. 894–905. doi 10.1002/2015JA022194CrossRefGoogle Scholar
  6. 6.
    Danilov, A.D., Reaction of F region to geomagnetic disturbances (review), Geliogeofiz. Issled., 2013, vol. 5, pp. 1–33.Google Scholar
  7. 7.
    Danilov, A.D. and Laštovička, J., Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, no. 3, pp. 209–224.Google Scholar
  8. 8.
    Depuev, V. and Depueva, A., Some longitudinal features of low latitude ionosphere response to geomagnetic storm of March 29, 1979, Int. J. Electron. Appl. Res., 2016, vol. 3, no. 2, pp. 92−98. http://www.eses.net.in/documents/ paper3.2.2.pdf.Google Scholar
  9. 9.
    Devi, M., Barman, M.K., and Barbara, A.K., Identification of quiet and disturbed days through IEC profile features over anomaly crest region, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, nos. 12–14, pp. 1413–1423. doi 10.1016/S1364-6826(02)00105-0CrossRefGoogle Scholar
  10. 10.
    Devi, M., Barbara, A.K., Oyama, K.-I., and Chen, C.-H., Earthquake induced dynamics at the ionosphere in presence of magnetic storm, Adv. Space Res., 2013, vol. 53, no. 4, pp. 609–618. doi 10.1016/j.asr.2013.11.054CrossRefGoogle Scholar
  11. 11.
    Dorman, L.I., Space weather and dangerous phenomena on the Earth: Principles of great geomagnetic storms forecasting by online cosmic ray data, Ann. Geophys., 2005, vol. 23, no. 9, pp. 2997–3002. doi 10.5194/ angeo-23-2997-2005CrossRefGoogle Scholar
  12. 12.
    Fejer, B.G. and Scherliess, L., Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances, Geophys. Res. Lett., 1995, vol. 22, no. 7, pp. 851–854. doi 10.1029/95GL00390CrossRefGoogle Scholar
  13. 13.
    Fejer, B.G., Gonzalez, C.A., Farley, D.T., Kelly, M.C., and Woodman, R.F., Equatorial electric fields during magnetically disturbed conditions, 1. The effect of the interplanetary magnetic field, J. Geophys. Res., 1979, vol. 84, no. 10, pp. 5797–5802. doi 10.1029/ JA084iA10p05797CrossRefGoogle Scholar
  14. 14.
    Foster, J.C. and Rideout, W., Midlatitude TEC enhancements during the October 2003 superstorm, Geophys. Res. Lett., 2005, vol. 32, L12S04. doi 10.1029/2004GL021719CrossRefGoogle Scholar
  15. 15.
    Foster, J.C. and Rideout, W., Storm enhanced density: Magnetic conjugacy effects, Ann. Geophys., 2007, vol. 25, no. 8, pp. 1791–1799. doi 10.5194/angeo-25-1791-2007CrossRefGoogle Scholar
  16. 16.
    Heelis, R.A., Sojka, J.J., David, M., and Schunk, R.W., Storm time density enhancements in the middle-latitude dayside ionosphere, J. Geophys. Res., 2009, vol. 114, A03315. doi 10.1029/2008JA013690Google Scholar
  17. 17.
    Huang, C.M., Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times, J. Geophys. Res., 2013, vol. 118, no. 1, pp. 496–501. doi 10.1029/2012JA018118CrossRefGoogle Scholar
  18. 18.
    Huang, C.M., Chen, M.Q., and Liu, J.Y., Ionospheric positive storm phases at the magnetic equator close to sunset, J. Geophys. Res., 2010, vol. 115, A07315. doi 10.1029/2009JA014936Google Scholar
  19. 19.
    Jin, S., Jin, R., and Kutoglu, H., Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations, J. Geod., 2017, vol. 91, no. 6, pp. 613–626. doi 10.1007/s00190-016-0988-4CrossRefGoogle Scholar
  20. 20.
    Kaye, S.M. and Kivelson, M.G., The influence of geomagnetic activity on the radial variation of the magnetospheric electric field between L = 4 and 10, J. Geophys. Res., 1981, vol. 86, no. 2, pp. 863–867. doi 10.1029/ JA086iA02p00863CrossRefGoogle Scholar
  21. 21.
    Kuai, J., Liu, L., Liu, J., Zhao, B., Chen, Y., Le, H., and Wan, W., The long-duration positive storm effects in the equatorial ionosphere over Jicamarca, J. Geophys. Res., 2015, vol. 120, no. 2, pp. 1311–1324. doi 10.1002/2014JA020552CrossRefGoogle Scholar
  22. 22.
    Lanzerotti, L.J., Cogger, L.L., and Mendillo, M., Latitude dependence of ionosphere total electron content: Observations during sudden commencement storms, J. Geophys Res., 1975, vol. 80, no. 10, pp. 1287–1306. doi 10.1029/JA080i010p01287CrossRefGoogle Scholar
  23. 23.
    Laštovička, J., Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere, J. Atmos. Terr. Phys., 1996, vol. 58, no. 7, pp. 831–843. doi 10.1016/0021-9169(95)00106-9CrossRefGoogle Scholar
  24. 24.
    Lin, C.H., Richmond, A.D., Heelis, R.A., Bailey, G.J., Lu, G., Liu, J.Y., Yeh, H.C., and Su, S.-Y., Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field, J. Geophys. Res., 2003, vol. 110, A12312. doi 10.1029/2005JA011304CrossRefGoogle Scholar
  25. 25.
    Lin, C.H., Richmond, A.D., Liu, J.Y., Yeh, H.C., Paxton, L.J., Lu, G., Tsai, H.F., and Su, S.-Y., Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: Observational results, J. Geophys. Res., 2005, vol. 110, A09S28. doi 10.1029/2004JA010900Google Scholar
  26. 26.
    Lu, G., Richmond, A.D., Roble, R.G., and Emery, B.A., Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study, J. Geophys. Res., 2001, vol. 106, no. 11, pp. 24493–24504. doi 10.1029/2001JA000003CrossRefGoogle Scholar
  27. 27.
    Mannucci, A.J., Tsurutani, B.N., Iijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, J.U., and Scoug, R., Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 2005, vol. 32, L12S02. doi 10.1029/2004GL021467Google Scholar
  28. 28.
    Mendillo, M. and Narvaez, C., Ionospheric storms at geophysically-equivalent sites, Part 2: Local time storm patterns for sub-auroral ionospheres, Ann. Geophys., 2009, vol. 27, no. 7, pp. 1449–1462. doi 10.5194/angeo-28-1449-2010CrossRefGoogle Scholar
  29. 29.
    Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 1993, vol. 98, no. 4, pp. 5981–5991. doi 10.1029/92JA02777CrossRefGoogle Scholar
  30. 30.
    Prölss, G.W., Ionospheric storms at mid-latitude: A short review; in Midlatitude Ionospheric Dynamics and Disturbances, P.M. Kintner , Eds., Washington, D.C.: AGU, 2008, vol. 181, pp. 9–24. doi 10.1029/181GM03Google Scholar
  31. 31.
    Pudovkin, M.I. and Raspopov, O.M., The mechanism of action of solar activity on the state of the lower atmosphere and meteorological parameters (a review), Geomagn. Aeron., 1992, vol. 32, no. 5, pp. 593–608.Google Scholar
  32. 32.
    Stozhkov, Y.I., The role of cosmic rays in the atmospheric processes, J. Phys. G: Nucl. Part. Phys., 2003, vol. 29, no. 5, pp. 913–923. doi 10.1088/0954-3899/29/5/312CrossRefGoogle Scholar
  33. 33.
    Stozhkov, Y.I., Ermakov, V.I., and Makhmutov, V.S., Cosmic rays and atmospheric processes, in Proc. 27th Ray Conf., August 07–15, 2001, Hamburg, 2001, pp. 4157–4160.Google Scholar
  34. 34.
    Suvorova, A.V., Huang, C.-M., Matsumoto, H., Dmitriev, A.V., Kunitsyn, V.E., Andreeva, E.S., Nesterov, I.A., and Tsai, L.-C., Low-latitude ionospheric effects of energetic electrons during a recurrent magnetic storm, J. Geophys. Res., 2014, vol. 119, no. 11, pp. 9283–9302. doi 10.1002/2014JA020349CrossRefGoogle Scholar
  35. 35.
    Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 2000, vol. 94, nos. 1–2, pp. 231–258. doi 10.1023/A:1026775408875CrossRefGoogle Scholar
  36. 36.
    Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M.A., Sobral, J.H.A., Gonzalez, W., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., Fejer, B., Fuller-Rowell, T.J., Kozyra, J., Foster, J.C., Coster, A., and Vasyliunas, V.M., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 2004, vol. 109, A08302. doi 10.1029/2003JA010342CrossRefGoogle Scholar
  37. 37.
    Veretenenko, S.V. and Pudovkin, M.I., The galactic cosmic ray Forbush decrease effects on total cloudiness variations, Geomagn. Aeron., 1995, vol. 34, no. 4, pp. 463–468.Google Scholar
  38. 38.
    Vlasov, M., Kelley, M.C., and Kil, H., Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July 15, 2000, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, nos. 11–13, pp. 1223–1234. doi 10.1016/j.jastp.2003.08.012CrossRefGoogle Scholar
  39. 39.
    Yeh, H.-C., Foster, J.C., Rich, F.J., and Swider, W., Storm time electric field penetration observed at mid-latitude, J. Geophys. Res., 1991, vol. 96, no. 4, pp. 5707–5721. doi 10.1029/90JA02751CrossRefGoogle Scholar
  40. 40.
    Zhao, B., Wan, W., and Liu, L., Responses of equatorial anomaly to the October–November 2003 superstorms, Ann. Geophys., 2005, vol. 23, no. 3, pp. 693–706. doi 10.5194/angeo-23-693-2005CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Devi
    • 1
    Email author
  • S. Patgiri
    • 1
  • A. K. Barbara
    • 1
  • G. Gordiyenko
    • 2
  • A. Depueva
    • 3
  • V. Depuev
    • 3
  • Yu. Ya. Ruzhin
    • 3
  1. 1.Department of Physics, Gauhati UniversityAssamIndia
  2. 2.Institute of Ionosphere, National Center for Space Research and TechnologyAlmatyKazakhstan
  3. 3.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)Moscow, Troitsk,Russia

Personalised recommendations