Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 6, pp 823–830 | Cite as

Irregular Phenomena in Magnetically Conjugate Regions of the F2 Layer of the Ionosphere

  • N. P. SergeenkoEmail author
Article
  • 22 Downloads

Abstract

The paper focuses on the behavior of relative variations in the critical frequency of the F2 layer of the ionosphere δfoF2 in magnetically conjugate regions under quiet and disturbed conditions. Comparison of changes in δfoF2 over time shows that the electron density level at stations in both hemispheres is about the same. The coupling of conjugate regions and the correlation of δfoF2 variations increase noticeably during ionospheric storms. In addition, the predawn effect in foF2 variations is investigated, which is caused by sunrise at the magnetically conjugate point. Statistics of the effect are presented for a month in winter. Examples of δfoF2 variations at the magnetically conjugate point during solar eclipses are given.

Notes

REFERENCES

  1. 1.
    Ben’kova, N.P., Bukin, G.V., Davoust, K., Kerblay, T.S., Lafey, M., Taieb, Sh., and Faynot, G.M., Results of ionospheric observations at Kerguelen and Sogra magnetoconjugate points, Geomagn. Aeron., 1969, vol. 7, no. 5, pp. 815–824.Google Scholar
  2. 2.
    Hanson, W.B., Electron temperatures in the upper atmosphere, Space Res., 1963, no. 3, pp. 282–302.Google Scholar
  3. 3.
    Huang, C.Y., Burke, W.J., and Lin, C.S., Two observed consequences of penetration electric fields, J. Atmos. Sol.-Terr. Phys., 2009, vol. 31, pp. 1614–1622.CrossRefGoogle Scholar
  4. 4.
    Khegai, V.V., Legen’ka, A.D., and Kim, V.P., Comparative analysis of disturbances in the midlatitude ionospheric F2 layer during strong and extreme magnetic storms in March 2001 according to the data from magnetically conjugate ground ionospheric stations, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 5, pp. 599–609.Google Scholar
  5. 5.
    Kikuchi, T., Ebihara, Y., Hashimoto, K.K., Kataoka, R., Hori, T., Watari, S., and Nishitani, N., Penetration of the convection and overshielding electric fields to the equatorial ionosphere during a quasiperiodic DP 2 geomagnetic fluctuation event, J. Geophys. Res., 2010, vol. 115, no. A05209.Google Scholar
  6. 6.
    Knipp, D.J., Lin, C.-H., Emery, B.A., Ruohoniemi, J.M., Rich, F.J., and Evans, D.S., Hemispheric asymmetries in ionospheric electrodynamics during the solar wind void of 11 May 1999, Geophys. Res. Lett., 2000, vol. 27, no. 24, pp. 4013–4016.CrossRefGoogle Scholar
  7. 7.
    Kol, G., Possible influence of diffusion between magnetoconjugate points on seasonal anomaly in the F layer, in Raspredelenie elektronov v verkhnei atmosfere (Distribution of Electrons in the Upper Atmosphere), Moscow: Mir, 1969, pp. 216–224.Google Scholar
  8. 8.
    Kosch, M.J., Anderson, C., Yiu, H.-C.I., Kellerman, A.C., and Makarevich, R.A., First observations of simultaneous interhemispheric conjugate high-latitude thermospheric winds, J. Geophys. Res., 2010, vol. 115, A09328.Google Scholar
  9. 9.
    Krinberg, I.A. and Tashchilin, A.V., The influence of the ionosphere–plasmasphere coupling upon the latitude variations of ionospheric parameters, Ann. Geophys., 1980, vol. 36, no. 4, pp. 537–548.Google Scholar
  10. 10.
    Krinberg, I.A. and Tashchilin, A.V., On the thermal plasma exchange between the ionosphere and the plasmasphere after a geomagnetic disturbance, in Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (Studies in Geomagnetism, Aeronomy, and Solar Physics), Moscow: Nauka, 1981, vol. 56, pp. 46–50.Google Scholar
  11. 11.
    Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmasphere), Moscow: Nauka, 1984.Google Scholar
  12. 12.
    Laundal, K.M. and Ostgaard, N., Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres, Nature. Lett., 2009, vol. 460, pp. 491–493.Google Scholar
  13. 13.
    Le, H., Liu, L., Yue, X., and Wan, W., The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse, Ann. Geophys., 2009, vol. 27, no. 1, pp. 179–184.CrossRefGoogle Scholar
  14. 14.
    Liou, K. and Newell, P.T., On the azimuthal location of auroral breakup: Hemispheric asymmetry, Geophys. Res. Lett., 2010, vol. 37, L23103.CrossRefGoogle Scholar
  15. 15.
    Luk’yanova, R.Yu., Asymmetric distribution of the electric potential in the ionosphere of the opposite hemispheres, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 4, pp. 445–450.Google Scholar
  16. 16.
    Lyatskaya, S., Lyatsky, W., and Khazanov, G.V., Relationship between substorm activity and magnetic disturbances in the two polar caps, Geophys. Res. Lett., 2008, vol. 35, L20104.CrossRefGoogle Scholar
  17. 17.
    McDonald, S.E., Dymond, K.F., and Summers, M.E., Hemispheric asymmetries in the longitudinal structure of the low-latitude nighttime ionosphere, J. Geophys. Res., 2008, vol. 113, A08308.CrossRefGoogle Scholar
  18. 18.
    Valladares, C.E., Villalobos, J., Hei, M.A., Sheehan, R., Basu, S., Mackenzie, E., Doherty, P.H., and Rios, V.H., Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern hemispheres, Ann. Geophys., 2009, vol. 27, no. 4, pp. 1501–1508.CrossRefGoogle Scholar
  19. 19.
    Vsekhsvyatskaya, I.S., Kalinin, Yu.K., Sergeenko, N.P., and Yudovich, L.A., On global inhomogeneities in the ionosphere, Geomagn. Aeron., 1972, vol. 12, no. 4, pp. 622–624.Google Scholar
  20. 20.
    Zevakina, R.A., Sergeenko, N.P., Zhulina, E.M., and Nosova, G.N., Rukovodstvo po kratkosrochnomu prognozirovaniyu ionosfery. Materialy MTsD B-2 (Guide to Short-Term Forecast of the Ionosphere: WDC-B2 Data), Moscow, 1990.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesMoscowRussia

Personalised recommendations