Geomagnetism and Aeronomy

, Volume 58, Issue 6, pp 701–709 | Cite as

Plasma Pressure under Magnetopause on the Dusk Flank in the Equatorial Plane for Large Negative ХGSM

  • S. S. ZnatkovaEmail author
  • E. E. AntonovaEmail author
  • I. P. Kirpichev
  • M. S. Pulinets


The crossings of the magnetopause and low-latitude boundary layer by the THEMIS-B satellite in the spring of 2008 on the dusk flank under large negative XGSM (from –17RE to –19RE) are studied. The parameters of plasma and magnetic field are analyzed from the data of ESA and MGF instruments. The changes in the total pressure, magnetic field pressure, and plasma pressure component during the transition from the magnetosheath to the plasma sheet (PS) are analyzed. The values of plasma pressures under the magnetopause at the edge of the PS for the considered events are determined. The applicability of the obtained results to the determination of the position of the boundary between the tail current and the ring current is discussed.



We are grateful to V. Angelopoulos, the THEMIS project team, and the participants of the NASA project no. NAS5-02099 for access to and preparation of the THEMIS project data. In particular, we thank C.W. Carlson and J.P. McFadden for the ESA instrument data, K.-H. Glassmeier, U. Auster, and W. Baumjohann for the FGM instrument data prepared under the guidance of the Technical University of Braunschweig, with the financial support of the German Federal Ministry of Economics and Technology, and with the assistance of the German Aerospace Center (DLR) within the project no. 50 OC 0302. This work was supported by the Russian Foundation for Basic Research, project no. 18-05-00362.


  1. 1.
    Angelopoulos, V., The THEMIS mission, Space Sci. Rev., 2008, vol. 141, pp. 5–34. doi 10.1007/s11214-008-9336-1CrossRefGoogle Scholar
  2. 2.
    Antonova, E.E., Stepanova, M.V., Kirpichev, I.P., et al., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 103–114. doi 10.1016/j.jastp.2017.10.013CrossRefGoogle Scholar
  3. 3.
    Auster, H.U., Glassmeier, K.H., Magnes, W., et al., The THEMIS fluxgate magnetometer, Space Sci. Rev., 2008, vol. 141, pp. 235–264. doi 10.1007/s11214-008-9365-9CrossRefGoogle Scholar
  4. 4.
    Baumjohann, W., Paschmann, G., and Luehr, H., Pressure balance between lobe and plasma sheet, Geophys. Res. Lett., 1990, vol. 17, no. 1, pp. 45–48. doi 10.1029/ GL017i001p00045CrossRefGoogle Scholar
  5. 5.
    Hasegawa, H., Fujimoto, M., Phan, T.-D., Rème, H., Balogh, A., Dunlop, M.W., Hashimoto, C., and TanDokoro, R., Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices, Nature, 2004, vol. 430, pp. 755–758. doi 10.1038/ nature02799CrossRefGoogle Scholar
  6. 6.
    Kirpichev, I.P. and Antonova, E.E., Estimation of the current density and analysis of the geometry of the current system surrounding the Earth, Cosmic Res., 2014, vol. 52, no. 1, pp. 52–60. doi 10.7868/S002342061401004XCrossRefGoogle Scholar
  7. 7.
    Kirpichev, I.P., Antonova, E.E., and Znatkova, S.S., Evolution of spectral index of energetic protons in the magnetopause crossing at the subsolar point, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 709–714. doi 10.7868/S001679401506005XGoogle Scholar
  8. 8.
    Kirpichev, I.P., Antonova, E.E., and Stepanova, M., Ion leakage at dayside magnetopause in case of high and low magnetic shears, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 8, pp. 8078–8095. doi 10.1002/2016JA023735CrossRefGoogle Scholar
  9. 9.
    Kistler, L.M., Moebius, E., Baumjohann, W., Paschmann, G., and Hamilton, D.C., Pressure changes in the plasma sheet during substorm injections, J. Geophys. Res., 1992, vol. 97, no. A3, pp. 2973–2983. doi 10.1029/91JA02802CrossRefGoogle Scholar
  10. 10.
    Maltsev, Y.P., Points of controversy in the study of magnetic storms, Space Sci. Rev., 2004, vol. 110, nos. 3–4, pp. 227–267. doi 10.1023/B:SPAC.0000023410.77752.30CrossRefGoogle Scholar
  11. 11.
    McFadden, J.P., Carlson, C.W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., and Angelopoulos, V., The THEMIS ESA plasma instrument and in flight calibration, Space Sci. Rev., 2008, vol. 141, pp. 277–302. doi 10.1007/s11214-008-9440-2CrossRefGoogle Scholar
  12. 12.
    Mishin, V.V., Accelerated motions of the magnetopause as a trigger of the Kelvin–Helmholtz instability, J. Geophys. Res., 1993, vol. 98, no. A12, pp. 21365–21371. doi 10.1029/93JA00417CrossRefGoogle Scholar
  13. 13.
    Némeček, Z., Šáfranková, J., Kruparova, O., Přech, L., Jelinek, K., Dusik, Š., Šimunek, J., Grygorov, K., and Shue, J.-H., Analysis of temperature versus density plots and their relation to the LLBL formation under southward and northward IMF orientations, J. Geophys. Res., 2015, vol. 120, no. 5, pp. 3475–3488. doi 10.1002/2014JA020308CrossRefGoogle Scholar
  14. 14.
    Petrukovich, A.A., Mukai, T., Kokubun, S., Romanov, S.A., Saito, Y., Yamamoto, T., and Zelenyi, L.M., Substorm-associated pressure variations in the magnetotail plasma sheet and lobe, J. Geophys. Res., 1999, vol. 104, no. A3, pp. 4501–4513. doi 10.1029/98JA02418CrossRefGoogle Scholar
  15. 15.
    Pulinets, M.S., Antonova, E.E., Riazantseva, M.O., Znatkova, S.S., and Kirpichev, I.P., Comparison of the magnetic field before the subsolar magnetopause with the magnetic field in the solar wind before the bow shock, Adv. Space Res., 2014, vol. 54, no. 4, pp. 604–616. doi 10.1016/j.asr.2014.04.023CrossRefGoogle Scholar
  16. 16.
    Pulinets, M.S., Kirpichev, I.P., and Antonova, E.E., Variations in plasma parameters and magnetic field upon magnetopause crossing at the main phase maximum of the magnetic storm of November 14, 2012, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 6, pp. 673–681. doi 10.7868/S0016794016060134Google Scholar
  17. 17.
    Šáfranková, J., Hayosh, M., Gutynska, O., Némeček, Z., and Přech, L., Reliability of prediction of the magnetosheath Bz component from interplanetary magnetic field observations, J. Geophys. Res., 2009, vol. 114, doi 10.1029/2009JA014552Google Scholar
  18. 18.
    Tsyganenko, N.A. and Mukai, T., Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 2003, vol. 108, no. A3, doi 10.1029/2002JA00907Google Scholar
  19. 19.
    Wang, C.P., Yue, C., Zaharia, S., Xing, X., Lyons, L., Angelopoulos, V., Nagai, T., and Lui, T., Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 1. Observation, J. Geophys. Res., 2013, vol. 118, no. 10, pp. 6154–6165. doi 10.1002/jgra.50585CrossRefGoogle Scholar
  20. 20.
    Znatkova, S.S., Antonova, E.E., Zastenker, G.N., and Kirpichev, I.P., Pressure balance on the magnetopause near the subsolar point according to observational data of the THEMIS project satellites, Cosmic Res., 2011, vol. 49, no. 1, pp. 3–20. S0010952510061048CrossRefGoogle Scholar
  21. 21.
    Znatkova, S.S., Antonova, E E., Pulinets, M.S., Kirpichev, I.P., and Riazantseva, M.O., Thickness of the low-latitude boundary layer at different levels of magnetic field fluctuations in the magnetosheath, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 5, pp. 573–581. doi 10.7868/S0016794015050211Google Scholar
  22. 22.
    Znatkova, S.S., Antonova, E.E., Pulinets, M.S., Kirpichev, I.P., and Riazantseva, M.O., The dependence of the LLBL thickness on IMF B z and B y components, Adv. Space Res., 2016, vol. 58, pp. 268–275. doi 10.1016/j.asr.2016.01.008CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Nuclear Physics, Moscow State UniversityMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations