Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 6, pp 718–727 | Cite as

Effect of the Magnetopause and Bow Shock on Characteristics of Plasma Turbulence in the Earth’s Magnetosheath

  • L. S. RakhmanovaEmail author
  • M. O. RiazantsevaEmail author
  • G. N. Zastenker
  • M. I. Verigin
Article
  • 25 Downloads

Abstract

The magnetosheath is a natural laboratory for the study of plasma turbulence. The magnetopause and the bow shock prevent freely development of turbulence and modify turbulent cascade. In this paper, the effect of the magnetosheath boundaries on the forms of frequency spectra of ion flux fluctuations is analyzed based on statistics. In addition, variance in the spectrum characteristics are considered, such as spectral slope at the magnetohydrodynamic (MHD) and kinetic scales, as well as the frequency of transition between these scales when the satellite crosses the magnetosheath. The analysis is based on measurement of the ion flux by the Fast Solar Wind Monitor (BMSW) onboard the Spektr-R satellite with a time resolution of 31 ms. It is shown that the probability of observing spectra of the particular type greatly varies upon crossing of the magnetosheath: standard spectra with two slopes and a distinct breakpoint are observed in most cases in all parts of the magnetosheath, and the probability of their observation is slightly higher upon the approach to the magnetopause; spectra with a peak in the region of transition between the scales (MHD and kinetic) are more often observed closer to the bow shock, and spectra with a plateau in the region of transition between the scales are usually observed closer to the magnetopause. It is revealed that the spectra at the MHD scales immediately behind the bow shock are described by a power function with index –1.3 on average, which noticeably differs from the index of –5/3 predicted by the classical theories. The spectra at the kinetic scales immediately behind the shock wave become steeper than in the solar wind and slightly flatten on the approach to the magnetopause.

Notes

ACKNOWLEDGMENTS

Authors are grateful to their colleagues from the Space Research Institute of the Russian Academy of Sciences, Lavochkin Research and Production Association, and Charles University in Prague, Czech Republic, for their assistance in the development, adjustment, calibration, flight monitoring, and collecting, transmission and preprocessing of the scientific information from the BMSW device.

REFERENCES

  1. 1.
    Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M., and André, M., Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock, J. Geophys. Res., 2006, vol. 111, A12208. doi 10.1029/2006JA011934CrossRefGoogle Scholar
  2. 2.
    Alexandrova, O., Lacombe, C., and Mangeney, A., Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations, Ann. Geophys., 2008, vol. 26, no. 11, pp. 3585–3596. doi 10.5194/angeo-26-3585-2008CrossRefGoogle Scholar
  3. 3.
    Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., and Bale, S.D., Solar wind turbulence and the role of ion instabilities, Space Sci. Rev., 2013, vol. 178, pp. 101–139.CrossRefGoogle Scholar
  4. 4.
    Bieber, J.W. and Stone, E.C., Energetic electron bursts in the magnetopause electron layer and in interplanetary space, in Proc. Magnetospheric Boundary Layers Conference, Alpbach, USA, 1979, ESA SP-148, pp. 131–135.Google Scholar
  5. 5.
    Breuillard, H., Yordanova, Y., Vaivads, A., and Alexandrova, O., The effects of kinetic instabilities on small-scale turbulence in Earth’s magnetosheath, Astrophys. J., 2016, vol. 829, no. 1, id 54. doi 10.3847/0004-637X/829/1/54Google Scholar
  6. 6.
    Bruno, R. and Carbone, V., The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2013, vol. 10, doi 10.12942/lrsp-2013-2Google Scholar
  7. 7.
    Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., and Pongkitiwanichakul, P., Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements, Astrophys. J., 2009, vol. 707, pp. 1668–1675. doi 10.1088/0004-637X/707/2/1668CrossRefGoogle Scholar
  8. 8.
    Chen, C.H.K., Boldyrev, S., Xia, Q., and Perez, J.C., Nature of subproton scale turbulence in the solar wind, Phys. Rev. Lett., 2013, vol. 110, no. 22, 225002. doi 10.1103/PhysRevLett.110.225002CrossRefGoogle Scholar
  9. 9.
    Chen, C.H.K., Leung, L., Boldyrev, S., Maruca, B.A., and Bale, S.D., Ion-scale spectral break of solar wind turbulence at high and low beta, Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 8081–8088. doi 10.1002/2014GL062009CrossRefGoogle Scholar
  10. 10.
    Czaykowska, A., Bauer, T.M., Treumann, R.A., and Baumjohann, W., Magnetic field fluctuations across the earth’s bow shock, Ann. Geophys., 2001, vol. 19, pp. 275–287.CrossRefGoogle Scholar
  11. 11.
    Frisch, U., Turbulence, Cambridge: Cambridge University Press, 1995.CrossRefGoogle Scholar
  12. 12.
    Gagua, I.T., Gagua, T.I., and Zastenker, GN., Determination of a solar wind ion flux value and direction using a set of integral Faraday cups for the fast monitor of solar wind, in WDC'09 Proc. of Contributed Papers, Part II: Physics of Plasmas and Ionized Media, Prague, Czech Republic, 2009, pp. 22–29.Google Scholar
  13. 13.
    Galtier, S., Wave turbulence in incompressible hall magnetohydrodynamics, J. Plasma Phys., 2006, vol. 72, no. 5, pp. 721–769. doi 10.1017/S0022377806004521CrossRefGoogle Scholar
  14. 14.
    Greenstadt, E.W., Observation of nonuniform structure of the Earth’s bow shock correlated with interplanetary field orientation, J. Geophys. Res., 1972, vol. 77, no. 10, 1029. doi 10.1029/JA077i010p01729Google Scholar
  15. 15.
    Gutynska, O., Šafránková, J., and Němeček, Z., Correlation properties of magnetosheath magnetic field fluctuations, J. Geophys. Res., 2009, vol. 114, no. A8, A08207. doi 10.1029/2009JA014173CrossRefGoogle Scholar
  16. 16.
    Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., and Tenbarge, J.M., The slow-mode nature of compressible wave power in solar wind turbulence, Astrophys. J. Lett., 20112, vol. 753, no. 1, L19. doi 10.1088/2041-8205/753/1/L19Google Scholar
  17. 17.
    Huang, S.Y., Hadid, L.Z., Sahraoui, F., Yuan, Z.G., and Deng, X.H., On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence, Astrophys. J. Lett., 2017, vol. 836, no. 1, L10. doi 10.3847/2041-8213/836/1/L10CrossRefGoogle Scholar
  18. 18.
    Kolmogorov, A.N., The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–303.Google Scholar
  19. 19.
    Kozak, L.V., Pilipenko, V.A., Chugunova, O.M., and Kozak, P.N., Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath, Cosmic Res., 2011, vol. 49, no. 3, pp. 194–204.CrossRefGoogle Scholar
  20. 20.
    Lacombe, C. and Belmont, G., Waves in the Earth’s magnetosheath: Observations and interpretations, Adv. Space Res., 1995, vol. 15, nos. 8–9, pp. 329–340. doi 10.1016/0273-1177(94)00113-FCrossRefGoogle Scholar
  21. 21.
    Nikolaeva, N.S., Zastenker, G.N., Šafránková, J., Němeček, Z., Nozdrachev, M.N., Romanov, S.A., Yermolaev, Yu.I., and Eismont, N.A., On sources and amplitude of magnetopause motion, Cosmic Res., 1998, vol. 36, no. 6, pp. 537–548.Google Scholar
  22. 22.
    Pitña, A., Šafránková, J., Němeček, Z., Goncharov, O., Nĕmec, F., Přech, L., Chen, C.H.K., and Zastenker, G.N., Density fluctuations upstream and downstream of interplanetary shocks, Astrophys. J., 2016, vol. 819, id 41. doi 10.3847/0004-637X/819/1/41Google Scholar
  23. 23.
    Rakhmanova, L., Riazantseva, M., and Zastenker, G., Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales, Ann. Geophys., 2016, vol. 34, pp. 1011–1018.CrossRefGoogle Scholar
  24. 24.
    Rakhmanova, L., Riazantseva, M., Zastenker, G., and Yermolaev, Yu., High-frequency plasma fluctuations in the middle magnetosheath and near its boundaries: Spektr-R observations, J. Plasma Phys., 2017, vol. 83, 705830204. doi 10.1017/S002237781700023XCrossRefGoogle Scholar
  25. 25.
    Rezeau, L., Belmont, G., Cornilleau-Wehrlin, N., and Reberac, F., Spectral law and polarization properties of the low frequency waves at the magnetopause, Geophys. Res. Lett., 1999, vol. 26, no. 6, pp. 651–654. doi 10.1029/1999GL900060CrossRefGoogle Scholar
  26. 26.
    Riazantseva, M.O., Budaev, V.P., Zelenyi, L.M., Zastenker, G.N., Pavlos, G.P., Šafránková, J., Němeček, Z., Přech, L., and Nĕmec, F., Dynamic properties of small scale solar wind plasma fluctuations, Philos. Trans. R. Soc. A, 2015, vol. 373, 20140146. doi 10.1098/rsta.2014.0146CrossRefGoogle Scholar
  27. 27.
    Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Comparison of properties of small scale ion flux fluctuations in flank magnetosheath and in solar wind, Adv. Space Res., 2016, vol. 58, no. 2, pp. 166–174.CrossRefGoogle Scholar
  28. 28.
    Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Variety of shapes of solar wind ion flux spectra: Spektr-R measurements, J. Plasma Phys., 2017, vol. 83, no. 4, 705830401. doi 10.1017/S0022377817000502CrossRefGoogle Scholar
  29. 29.
    Riazantseva, M.O., Rakhmanova, L.S., Zastenker, G.N., and Yermolaev, Yu.I., T Types of spectra of ion flux fluctuations in the solar wind and magnetosheath at the interface between inertial and dissipative ranges, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 1–7.Google Scholar
  30. 30.
    Šafránková, J., Němeček, Z., Přech, L., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, pp. 165–182.CrossRefGoogle Scholar
  31. 31.
    Šafránková, J., Němeček, Z., Nĕmec, F., Přech, L., Pitña, A., Chen, C.H.K., and Zastenker, G., Solar wind density spectra around the ion spectral break, Astrophys. J., 2015, vol. 803, id 107. doi 10.1088/0004-637X/803/2/107Google Scholar
  32. 32.
    Šafránková, J., Němeček, Z., Nĕmec, F., Přech, L., Chen, C.H.K., and Zastenker, G., Power spectral density of fluctuations of bulk and thermal speeds in the solar wind, Astrophys. J., 2016, vol. 825, id 121. doi 10.3847/0004-637X/825/2/121Google Scholar
  33. 33.
    Sahraoui, F., Belmont, G., Rezeau, L., and Cornilleau-Wehrlin, N. Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the Cluster spacecraft, Phys. Rev. Lett., 2006, vol. 96, no. 7, 075002. doi 10.1103/PhysRevLett.96.075002CrossRefGoogle Scholar
  34. 34.
    Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., and Tatsuno, T., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J., Suppl. Ser., 2009, vol. 182, pp. 310–377.CrossRefGoogle Scholar
  35. 35.
    Schwartz, S.J., Burgess, D., and Moses, J.J., Low-frequency waves in the Earth’s magnetosheath: present status, Ann. Geophys., 1996, vol. 14, pp. 1134–1150.Google Scholar
  36. 36.
    Shevyrev, N. and Zastenker, G., Some features of plasma flow in the magnetosheath behind the quasi-parallel and quasi-perpendicular bow shocks, Planet. Space Sci., 2005, vol. 53, pp. 95–102.CrossRefGoogle Scholar
  37. 37.
    Shevyrev, N., Zastenker, G.N., Nozdrachev, M.N., Němeček, Z., Šafránková, J., and Richardson, J.D., High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: Radial profile and some features, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1389–1394.CrossRefGoogle Scholar
  38. 38.
    Shue, J.-H., Chao, J.K., Fu, H.C., Khurana, K.K., Russell, C.T., Singer, H.J., and Song, P., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., vol. 103, no. A8, pp. 17691–17700. doi 10.1029/98JA01103Google Scholar
  39. 39.
    Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 1966, vol. 14, pp. 223–253.CrossRefGoogle Scholar
  40. 40.
    Tu, C.-Y. and Marsch, E., MHD structures, waves and turbulence in the solar wind: Observations and theories, Space Sci. Rev., 1995, vol. 73, nos. 1–2, pp. 1–210. doi 10.1007/BF00748891CrossRefGoogle Scholar
  41. 41.
    Verigin, M.I., Kotova, G.A., Slavin, J., Szabo, A., Kessel, M., Šafránková, J., Němeček, Z., Gombosi, T.I., Kabin, K., Shugaev, F., and Kalinchenko, A., Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations, Adv. Space Res., 2001, vol. 28, no. 6, pp. 857–862.CrossRefGoogle Scholar
  42. 42.
    Verigin, M.I., Tátrallyay, M., Erdős, G., and Kotova, G.A., Magnetosheath interplanetary medium reference frame: application for a statistical study of mirror type waves in the terrestrial plasma environment, Adv. Space Res., 2006, vol. 37, no. 3, pp. 515–521. doi 10.1016/j.asr.2005.03.042CrossRefGoogle Scholar
  43. 43.
    Zastenker, G.N., Šafránková, J., Němeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Space Research Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations