Geomagnetism and Aeronomy

, Volume 58, Issue 6, pp 784–792 | Cite as

Variations in the Auroral Activity and Main Magnetic Field of the Earth over 300 years (1600–1909)

  • N. G. PtitsynaEmail author
  • I. M. Demina
  • M. I. Tyasto


We estimate the contribution of the systematic component of the Earth’s main magnetic field (MMF), i.e., the main dipole, to the secular variation in the midlatitude polar auroras based on the archived data. It is found that the main features of the variations in the magnetic moment (MM) of the main dipole in 1600–1909 are reflected in variations in the annual number of polar auroras N with the opposite sign (correlation coefficient of 0.6–0.8). A model of the dependence of the number of polar auroras N on the solar activity expressed in the Wolf number W and on the MM value is proposed. Taking into account the effect of the MM noticeably improves the properties of the N versus W dependence. It is found that the disagreement between the 11-year cycles of N and W observed in 1700–1775, as well as the minimum N in ~1760–1767 (Silverman minimum), are conditioned by MM variations in the corresponding periods of time. A rapid increase in the MM near 1800 significantly contributes to the steep decline in N during the Dalton minimum. During those historical periods in which the MM value was 1.5–2 times greater than in the 17th–19th centuries (according to the archeomagnetic data), the number of polar auroras could be conditioned not so much by the solar activity as by the screening effect of the MMF.



  1. 1.
    Angot, A., The Aurora Borealis, New York: D. Appleton and Co., 1897.Google Scholar
  2. 2.
    Aspaas, P.P. and Hansen, T.L., The role of the Societas Meteorologica Palatina (1781–1792) in the history of auroral research, Acta Borealia, 2012, vol. 29, no. 2, pp. 157–176. doi 10.1080/08003831.2012.732283CrossRefGoogle Scholar
  3. 3.
    Ben-Yosef, E., Millman, M., Shaar, R., Taux, L., and Lipschits, O., Six centuries of geomagnetic intensity variations recorded by royal Judean stamped jar handles, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 9, pp. 2160–2165. doi 10.1073/pnas.161579711CrossRefGoogle Scholar
  4. 4.
    Burlatskaya, S.P., Variations in the virtual dipole moment of the geomagnetic field, Fiz. Zemli, 1985, no. 2, pp. 96–101.Google Scholar
  5. 5.
    Cox, A., Geomagnetic reversals, Science, 1969, vol. 163, pp. 237–244.CrossRefGoogle Scholar
  6. 6.
    Creer, K.M., Tucholka, P., and Barton, C.E., Eds., Geomagnetism of Baked Clay and Recent Sediments, Elsevier, 1983.Google Scholar
  7. 7.
    Dalton, J., Meteorological Observations and Essays, London: Baldwin and Gradock, 1834.Google Scholar
  8. 8.
    Demina, I.M., Farafonova, Yu.G., Sas-Uhrynowski, A., and Welker, E., Global anomalies of the main geomagnetic field and the dynamic model of their sources, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 1, pp. 129–138.Google Scholar
  9. 9.
    Eddy, J.A., The historical record of solar activity, in The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Proceedings of the Conference, Boulder, Colordao, October 16–19, 1979), New York and Oxford: Pergamon, 1980, pp. 119–134.Google Scholar
  10. 10.
    Feynman, J. and Ruzmaikin, A., The centennial Gleissberg cycle and its association with extended minima, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 8, pp. 6027–6041.CrossRefGoogle Scholar
  11. 11.
    Halley, E., An account of the late surprising appearance of the lights seen in the air, on the sixth of March last; with an attempt to explain the principal phenomena thereof, Philos. Trans. R. Soc. London, 1716, vol. 29, pp. 406–428.CrossRefGoogle Scholar
  12. 12.
    Hayakawa, H., Tamazawa, H., Kawamura, A.D., and Isobe, H., Records of sunspot and aurora during CE 960–1279 in the Chinese chronicle of the Sòng dynasty, Earth. Planets Space, 2015, vol. 67, no. 82, doi 10.1186/s40623-015-0250-yGoogle Scholar
  13. 13.
    Hoyt, D.V. and Schatten, K.H., Group sunspot numbers: A new solar activity reconstruction. Part 1, Sol. Phys., 1998, vol. 179, pp. 189–219.CrossRefGoogle Scholar
  14. 14.
    Jackson, A., Jonker, A., and Walker, M., Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. London A, 2000, vol. 358, pp. 957–990.CrossRefGoogle Scholar
  15. 15.
    Keimatsu, M., A chronology of aurorae and sunspots observed in China, Korea and Japan, Ann. Sci., 1976, vol. 13, pp. 1–32.Google Scholar
  16. 16.
    Keimatsu, M., Fukushima, N., and Nagata, T., Archaeo-aurora and geomagnetic secular variation in historic time, J. Geomagn. Geoelectr., 1968, vol. 20, pp. 45–50.CrossRefGoogle Scholar
  17. 17.
    Korte, M., Reconstructing the global geomagnetic field of the Holocene, Latinmag Lett., 2011, vol. 1, no. C02, pp. 1–6.Google Scholar
  18. 18.
    Křivsky, L. and Pejml, K., Solar activity, aurorae and climate in Central Europe in the last 1000 years, Trav. Inst. Geophys. Acad. Tchechoslovaque Sci., Publ. Astron. Inst. Czech. Acad. Sci., 1985, vol. 33, no. 606, pp. 77–151.Google Scholar
  19. 19.
    Liritzis, Y., Aurorae boreales and geomagnetic inclinations as aids to archaeomagnetic dating, Earth, Moon, Planets, 1988, vol. 42, no. 2, pp. 151–162.CrossRefGoogle Scholar
  20. 20.
    Liritzis, Y. and Kovacheva, M., Some evidence for sharp changes in the archeomagnetic intensity variation during the last 2000 years, Phys. Earth Planet. Int., 1992, vol. 70, pp. 85–89.CrossRefGoogle Scholar
  21. 21.
    Liritzis, Y. and Petropoulos, B., Latitude dependence of auroral frequency in relation to solar–terrestrial and interplanetary parameters, Earth, Moon, Planets, 1987, vol. 39, no. 1, pp. 75–91.CrossRefGoogle Scholar
  22. 22.
    Loisha, V.A., Krakovetskii, Yu.K., and Popov, L.N., Polyarnye siyaniya. Katalog IV–XVIII vv. (Catalog of Polar Auroras for IV–XVIII Centuries), Moscow: Mezhvedomstvennyi geofizicheskii komitet AN SSSR, 1989.Google Scholar
  23. 23.
    Loomis, E., The aurora borealis or polar light; its phenomena and laws, Ann. Rep. Smithson. Inst., 1866, no. 13.Google Scholar
  24. 24.
    Lovering, J., On the periodicity of the aurora borealis, Mem. Am. Acad. Arts Sci., 1868, vol. 10, pp. 9–351.Google Scholar
  25. 25.
    Mairan, J.J., Traité physique et historique de l’aurore boréale. Suite des Mémoires de l’Académie Royale des Science, Paris: l’Impremerie Royale, 1733.Google Scholar
  26. 26.
    Maunder, W., A prolonged sun-spot minimum, Knowledge, 1894, vol. 17, pp. 173–176.Google Scholar
  27. 27.
    Nagovitsyn, Yu.A., Global solar activity on long time scales, Astrophys. Bull., 2008, vol. 63, no. 1, pp. 43–55.Google Scholar
  28. 28.
    Ogurtsov, M.G., Nagovitsyn, Yu.A., Kocharov, G.E., and Jungner, H., Long-period cycles of the Sun’s activity recorded in direct solar data and proxies, Sol. Phys., 2002, vol. 211, nos. 1–2, pp. 371–394.CrossRefGoogle Scholar
  29. 29.
    Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., Variations in the occurrence frequency of Aurora in 1837–1900 from data of the Russian network of meteorological observatories, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 5, pp. 679–687.Google Scholar
  30. 30.
    Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., 22-year cycle in the frequency of aurora occurrence in XIX century: Latitudinal effects, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 190–198.Google Scholar
  31. 31.
    Schove, D.J., Aurora numbers since 500 B.C., J. Br. Astron. Assoc., 1962, vol. 72, no. 1, pp. 31–35.Google Scholar
  32. 32.
    Silverman, S.M., Secular variation of the aurora for the past 500 years, Rev. Geophys., 1992, vol. 30, no. 4, pp. 333–351.CrossRefGoogle Scholar
  33. 33.
    Simon, P.A. and Legrand, J.P., Solar cycle and geomagnetic activity: A review for geophysicists. Part II. The solar sources of geomagnetic activity and their links with sunspot cycle activity, Ann. Geophys., 1989, vol. 7, pp. 579–594.Google Scholar
  34. 34.
    Siscoe, G.L., Evidence in the auroral record for secular solar variability, Rev. Geophys., 1980, vol. 1, no. 8, pp. 647–658.CrossRefGoogle Scholar
  35. 35.
    Travers, R., Usoskin, I.G., Solanki, S.K., Becagli, S., Frezzetti, M., Severi, M., Stenni, B., and Udisti, R., Nitrate in polar ice: A new tracer of solar variability, Sol. Phys., 2012, vol. 280, no. 1, pp. 237–254.CrossRefGoogle Scholar
  36. 36.
    Tromholt, S., Catalog in der Norwegen bis juni 1878 beobachteten nordlichter, Kristiania, 1902.Google Scholar
  37. 37.
    Tsurutani, B., Gonzalez, W., Gonzalez, A.L.C., et al., Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 2006, vol. 111, A07S01.Google Scholar
  38. 38.
    Usoskin, I.G., A history of solar activity over millennia, Living Rev. Sol. Phys., 2017, vol. 14, id 3. doi 10.1007/s41116-017-0006-9Google Scholar
  39. 39.
    Usoskin, I.G. and Kovaltsov, G.A., Occurrence of extreme solar particle events: Assessment from historical proxy data, Astrophys. J., 2012, vol. 757, no. 1, id 92. doi 10.1088/ 0004-637X/757/1/92. 10.1088/0004-637X/757/1/92Google Scholar
  40. 40.
    Val’chuk, T.E., Livshits, M.A., and Fel’dshtein, Ya.I., Sounding of the high-latitude magnetic field of the Sun by geomagnetic field, Pis’ma Astron. Zh., 1978, vol. 4, no. 2, pp. 515–519.Google Scholar
  41. 41.
    Vásquez, M., Vaquero, J.M., and Gallego, M.C., Long-term spatial and temporal variations of aurora borealis events in the period 1700–1905, Sol. Phys., 2014, vol. 289, no. 5, pp. 1843–1861.CrossRefGoogle Scholar
  42. 42.
    Webb D.F., Crooker N.U., Plunkett S.P., and St. Cyr, O.C., The solar sources of geoeffective structures, in Space Weather: Progress and Challenges in Research and Applications, Song, P., Siscoe, G., and Singer, H.J., Eds., Washington, D.C.: AGU, 2001, pp. 123–141.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg Branch of the Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations