Geomagnetism and Aeronomy

, Volume 58, Issue 6, pp 809–816 | Cite as

Size Distribution of Forbush Effects

  • A. A. MelkumyanEmail author
  • A. V. BelovEmail author
  • M. A. Abunina
  • A. A. Abunin
  • E. A. Eroshenko
  • V. A. Oleneva
  • V. G. Yanke


The distribution of Forbush effect magnitude for cosmic rays with a rigidity of 10 GV observed in 1957–2016 is studied based on a large amount of experimental data from the IZMIRAN database of Forbush effects and interplanetary disturbances. It is demonstrated that the distribution for sufficiently strong Forbush effects follows a power law with an index close those determined earlier for coronal mass ejections. The obtained distributions are evidence that almost all Forbush effects with magnitudes exceeding 1.4% were included into the database. The majority of these effects are associated with interplanetary coronal mass ejections.



The authors wish to thank their colleagues involved in operation of the worldwide network of CR stations, which ensure continuous neutron monitoring (, and the NMDB collaboration (; EU FP7 project, contract no. 213007) for providing the needed data.


  1. 1.
    Aschwanden, M.J., A macroscopic description of a generalized self-organized criticality system: Astrophysical applications, Astrophys. J., 2014, vol. 782, no. 1, id 54.Google Scholar
  2. 2.
    Aschwanden, M.J., Global energetics of solar flares: IV. Coronal mass ejections energetics, Astrophys. J., 2016, vol. 831, no. 1, id 105.Google Scholar
  3. 3.
    Aschwanden, M.J., Global energetics of solar flares: VI. Refined energetics of coronal mass ejections, Astrophys. J., 2017, vol. 847, no. 1, id 27.Google Scholar
  4. 4.
    Aschwanden, M.J. and McTiernan, J.M., Reconciliation of waiting time statistics of solar flares observed in hard X‑rays, Astrophys. J., 2010, vol. 717, no. 2, pp. 683–692.CrossRefGoogle Scholar
  5. 5.
    Aschwanden, M.J., Crosby, N.B., Dimitropoulou, M., et al., 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev., 2016, vol. 198, nos. 1–4, pp. 47–166.CrossRefGoogle Scholar
  6. 6.
    Baisultanova, L.M., Belov, A.V., Dorman, L.I., and Yanke, V.G., Magnetospheric effects in cosmic rays during Forbush decrease, in Proc. 20th ICRC, Moscow, 1987, vol. 4, pp. 231–234.Google Scholar
  7. 7.
    Baisultanova, L.M., Belov, A.V., and Yanke, V.G., Magnetospheric effect of cosmic rays within the different phases of magnetic storms, in Proc. 24th ICRC, Rome, 1995, vol. 4, pp. 1090–1093.Google Scholar
  8. 8.
    Belov, A.V., Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Proc. IAU Symposium no. 257, 2009, pp. 119–130.Google Scholar
  9. 9.
    Belov, A.V., Eroshenko, E.A., and Yanke, V.G., Cosmic ray effects caused by the great disturbances of the interplanetary medium in 1990–1996, in Proc. 24th ICRC, 1999, Salt Lake City, 1999, vol. 6, pp. 431–434.Google Scholar
  10. 10.
    Belov, A.V., Eroshenko, E.A., Oleneva, V.A., Struminsky, A.B., and Yanke, V.G., What determines the magnitude of Forbush decreases?, Adv. Space Res., 2001, vol. 27, no. 3, pp. 625–630.CrossRefGoogle Scholar
  11. 11.
    Belov, A.V., Baisultanova, L., Eroshenko, E., Yanke, V., Mavromichalaki, H., Plainaki, S., Mariatos, G., and Pchelkin, V., Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003, J. Geophys. Res., 2005, vol. 110, A09S20. doi 10.1029/2005JA011067CrossRefGoogle Scholar
  12. 12.
    Belov, A., Kurt, V., Mavromichalaki, H., and Gerontidou, M., Peak size distributions of proton fluxes and associated soft X-ray flares, Sol. Phys., 2007, vol. 246, no. 2, pp. 457–470.CrossRefGoogle Scholar
  13. 13.
    Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., and Mavromichalaki, H., Galactic cosmic ray density variations in magnetic clouds, Sol. Phys., 2015, vol. 290, no. 5, pp. 1429–1444.CrossRefGoogle Scholar
  14. 14.
    Belov, A.V., Eroshenko, E.A., Yanke, G.V., Oleneva, V.A., Abunina, M.A., and Abunin, A.A., Global survey method for the world network of neutron monitors, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 356–372.Google Scholar
  15. 15.
    Cane, H.V., CMEs and Forbush decreases, Space Sci. Rev., 2000, vol. 93, nos. 1–2, pp. 55–77.CrossRefGoogle Scholar
  16. 16.
    Clauset, A., Shalizi, C.R., and Newman, M.E.J., Power law distributions in empirical data, SIAM Rev., 2009, vol. 51, no. 4, pp. 661–703.CrossRefGoogle Scholar
  17. 17.
    Cliver, E.W., Ling, A.G., Belov, A., and Yashiro, S., Size distributions of solar flares and solar energetic particle events, Astrophys. J. Lett., 2012, vol. 756, no. 2, id L29.Google Scholar
  18. 18.
    Corder, G.W. and Foreman, D.I., Nonparametric Statistics for Non-Statisticians, New Jersey: John Willey and Sons, 2009.CrossRefGoogle Scholar
  19. 19.
    Crosby, N.B., Aschwanden, M.J., and Dennis, B.R., Frequency distributions and correlations of solar X-ray flare parameters, Sol. Phys., 1993, vol. 143, no. 2, pp. 275–299.CrossRefGoogle Scholar
  20. 20.
    Debrunner, H., Flueckiger, E.O., von Mandach, H., and Arens, M., Determination of the ring current radii from cosmic ray neutron monitor data for the 17 December 1971 magnetic storm, Planet. Space Sci., 1979, vol. 27, pp. 577–581.CrossRefGoogle Scholar
  21. 21.
    Dorman, L.I., Variatsii kosmicheskikh luchei i issledovanie kosmosa (Cosmic Ray Variations and Space Research), Moscow: AN SSSR, 1963.Google Scholar
  22. 22.
    Dvornikov, V. and Sdobnov, V., Variation in the rigidity spectrum and anisotropy of cosmic rays at the period of Forbush effect on 12–25 July 1982, Int. J. Geomagn. Aeron., 2003, vol. 3, no. 3, pp. 217–228.Google Scholar
  23. 23.
    Forbush, S.E., On the effects in the cosmic-ray intensity observed during magnetic storms, Phys. Rev., 1937, vol. 51, pp. 1108–1109.CrossRefGoogle Scholar
  24. 24.
    Gerontidou, M., Vassilaki, A., Mavromichalaki, H., and Kurt, V., Frequency distributions of solar proton events, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, nos. 5–6, pp. 489–496.CrossRefGoogle Scholar
  25. 25.
    Goldstein, M., Morris, S., and Yen, G., Problems with fitting to the power-law distributions, Eur. Phys. J. B, 2004, vol. 41, no. 2, pp. 255–258. doi 10.101140/epjb/e2004-00316-5CrossRefGoogle Scholar
  26. 26.
    Krymskii, G.F., Kuz’min, A.I., Chirkov, N.P., Krivoshapkin, P.A., Skripin, G.V., and Altukhov, A.M., Cosmic ray distribution and the acceptance vectors detectors, Geomagn. Aeron., 1966, vol. 6, no. 6, pp. 991–996.Google Scholar
  27. 27.
    Lepreti, F., Carbone, V., Veltri, P., and Giuliani, P., Statistical properties of soft X-ray solar flares, in Proc. 10th International Solar Wind Conference, Pisa, Italy, 2003, vol. 679, pp. 774–777.Google Scholar
  28. 28.
    Lockwood, J.A., Forbush decreases in the cosmic radiation, Space Sci. Rev., 1971, vol. 12, no. 5, pp. 658–715.CrossRefGoogle Scholar
  29. 29.
    Lu, E.T. and Hamilton, R.J., Avalanches and the distribution of solar flares, Astrophys. J., 1991, vol. 380, pp. L89–L92.CrossRefGoogle Scholar
  30. 30.
    Melkumyan, A.A., Belov, A.V., Abunina, M.A., Abunin, A.A., Eroshenko, E.A., Oleneva, V.A., and Yanke, V.G., Main properties of Forbush effects related to high-speed streams from coronal holes, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 2, pp. 154–168.Google Scholar
  31. 31.
    Minamoto, Y., Fujita, S., and Hara, M., Frequency distributions of magnetic storms and SI + SSC-derived records at Kakioka, Memambetsu and Kanoya, Earth, Planets, Space, 2015, vol. 67, id 191.Google Scholar
  32. 32.
    Newman, N., Power laws, Pareto distributions and Zipf’s law, Contemp. Phys., 2006, vol. 46, pp. 323–351.CrossRefGoogle Scholar
  33. 33.
    Qiu, J., Liu, C., Gary, D., Nita, G., and Wang, H., Hard X-ray and microwave observations of microflares, Astrophys. J., 2004, vol. 612, pp. 530–545.CrossRefGoogle Scholar
  34. 34.
    Riley, P., On the probability of occurrence of the extreme space weather events, Space Weather, 2012, vol. 10, no. 2, S02012. doi 10.1029/2011SW000734CrossRefGoogle Scholar
  35. 35.
    Ruzmaikin, A., Feynman, J., and Stoev, S., Distribution and clustering of fast coronal mass ejections, J. Geophys. Res., 2011, vol. 116, no. A4, id A04220.Google Scholar
  36. 36.
    Wheatland, M.S., The coronal mass ejection waiting time distribution, Sol. Phys., 2003, vol. 214, no. 2, pp. 361–373.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Melkumyan
    • 1
    Email author
  • A. V. Belov
    • 2
    Email author
  • M. A. Abunina
    • 2
  • A. A. Abunin
    • 2
  • E. A. Eroshenko
    • 2
  • V. A. Oleneva
    • 2
  • V. G. Yanke
    • 2
  1. 1.Gubkin Russian State University of Oil and GasMoscowRussia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN), Russian Academy of SciencesMoscowTroitskRussia

Personalised recommendations