Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 6, pp 710–717 | Cite as

Plasma Pressure Profiles in the Dark Sector of the Earth’s Magnetosphere during the Magnetic Storm of May 29, 2010

  • I. P. KirpichevEmail author
  • E. E. AntonovaEmail author
Article
  • 13 Downloads

Abstract

Variations in the radial profile of the pressure and distortions of the magnetic field of the magnetosphere in the dark sector near the equatorial plane during the storm of May 29, 2010, are analyzed based on THEMIS data. The position of the pressure maximum during the main phase of the storm is determined. The time dynamics of the pressure maximum is traced during the recovery phase. The time of pressure relaxation to initial values (before the main phase) during the recovery phase are assessed. The coincidence of the positions of the pressure peak maximum and of maximal deviation of the magnetic field from the dipole one is ascertained.

Notes

ACKNOWLEDGMENTS

The authors are grateful to NASA (contract NAS5-02099) and V. Angelopoulos for THEMIS data, especially D. Larson and R.P. Lin for providing SST data; C.W. Carlson and J.P. McFadden, for providing ESA data; and K.H. Glassmeier, U. Austerand, and W. Baumjohann, for FGM data distributed under the supervision of Technical University of Braunschweig and under the financial support of the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) (contract 50 OC 0302). The authors are also grateful to R. Lepping for the opportunity to use data from the WIND satellite and to WDC for Geomagnetism, Kyoto, for providing geomagnetic indices.

REFERENCES

  1. 1.
    Angelopoulos, V., The THEMIS mission, Space Sci. Rev., 2008, vol. 141, pp. 5–34. doi 10.1007/s11214-008-9336-1CrossRefGoogle Scholar
  2. 2.
    Antonova, E.E., Stability of the magnetospheric plasma pressure distribution and magnetospheric storms, Adv. Space Res., 2006, vol. 38, pp. 1626–1630. doi 10.1016/j.asr.2005.05.005CrossRefGoogle Scholar
  3. 3.
    Antonova, E.E. and Stepanova, M.V., The problem of the acceleration of electrons of the outer radiation belt and magnetospheric substorms, Earth, Planets, Space, 2015, vol. 67, id 148. doi 10.1186/s40623-015-0319-7Google Scholar
  4. 4.
    Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the Earth at geocentric distances ∼7–10 R E, and magnetospheric current systems, J. Atmos. Sol.-Terr. Phys., 2013, vol. 99, pp. 85–91. doi 10.1016/j.jastp.2012.08.013CrossRefGoogle Scholar
  5. 5.
    Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the earth plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2014, vol. 115–116, pp. 32–40. doi 10.1016/j.jastp.2013.12.005CrossRefGoogle Scholar
  6. 6.
    Antonova, E.E., Stepanova, M., Kirpichev, I.P., Ovchinnikov, I.L., Vorobjev, V.G., Yagodkina, O.I., Riazantseva, M.O., Vovchenko, V.V., Pulinets, M.S., Znatkova, S.S., and Sotnikov, N.V., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 103–114. doi 10.1016/j.jastp.2017.10.013CrossRefGoogle Scholar
  7. 7.
    Auster, H.U., Glassmeier, K.H., Magnes, W., Aydogar, O., Baumjohann, W., et al., The THEMIS fluxgate magnetometer, Space Sci. Rev., 2008, vol. 141, pp. 235–264. doi 10.1007/s11214-008-9365-9CrossRefGoogle Scholar
  8. 8.
    Carovillano, R.L. and Maguire, J.J., Magnetic energy relationships in the magnetosphere, in Physics of the Magnetosphere, Carovillano, R.L., and McClay, J.F., Eds., Dordrecht: D. Reidel, 1968, pp. 290–300. doi 10.1029/ RG011i002p00289CrossRefGoogle Scholar
  9. 9.
    Carovillano, R.L. and Siscoe, G.L., Energy and momentum theorems in magnetospheric processes, Rev. Geophys. Space Phys., 1973, vol. 11, no. 2, pp. 289–353.CrossRefGoogle Scholar
  10. 10.
    Daglis, I.A., The role of magnetosphere–ionosphere coupling in magnetic storm dynamics, in Magnetic Storms, Washington, D.C.: AGU, 1997, pp. 107–116.Google Scholar
  11. 11.
    Daglis, I.A., Sarris, E.T., and Wilken, B., AMPTE/CCE observations of the ion population at geosynchronous altitudes, Ann. Geophys., 1993, vol. 11, pp. 685–696.Google Scholar
  12. 12.
    DeMichelis, P., Daglis, I.A., and Consolini, G., An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements, J. Geophys. Res., 1999, vol. 104, no. A12, pp. 28615–28624. doi 10.1029/1999JA900310CrossRefGoogle Scholar
  13. 13.
    Dessler, A.J. and Parker, E.N., Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 1959, vol. 64, no. 12, pp. 2239–2252. doi 10.1029/JZ064i012p02239CrossRefGoogle Scholar
  14. 14.
    Greenspan, M.E. and Hamilton, D.C., A test of the Dessler–Parker–Sckopke relation during magnetic storms, J. Geophys. Res., 2000, vol. 105, pp. 5419–5430. doi 10.1029/1999JA000284CrossRefGoogle Scholar
  15. 15.
    Kirpichev, I.P. and Antonova, E.E., Plasma pressure distribution in the equatorial plane of the Earth’s magnetosphere at geocentric distances of 6–10 R E according to the international THEMIS mission data, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 450–455.Google Scholar
  16. 16.
    Kirpichev, I.P. and Antonova, E.E., Estimation of the current density and analysis of the geometry of the current system surrounding the Earth, Cosmic Res., 2014, vol. 52, no. 1, pp. 52–60.CrossRefGoogle Scholar
  17. 17.
    Kirpichev, I.P., Antonova, E.E., Borodkova, N.L., Budnik, E.Yu., Lutsenko, V.N., Morozova, E.I., Pisarenko, N.F., and Yermolaev, Yu.I., The features of the ion plasma pressure distributions in the near Earth plasma sheet, Planet. Space Sci., 2005, vol. 53, pp. 209–215. doi 10.1016/j.pss.2004.09.046CrossRefGoogle Scholar
  18. 18.
    Koskinen, H.E.J., Physics of Space Storms. From the Solar Surface to the Earth, Berlin: Springer, 2011. doi 10.1007/978-3-642-00319-6CrossRefGoogle Scholar
  19. 19.
    Lyons, L.R. and Williams, D.J., Storm-associated variations of equatorially mirroring ring current protons, 1–800 keV, at constant first adiabatic invariant, J. Geophys. Res., 1976, vol. 81, no. 1, pp. 216–220.CrossRefGoogle Scholar
  20. 20.
    Mauk, B.H., Fox, N.J., Kanekal, S.G., Kessel, R.L., Sibeck, D.G., and Ukhorskiy, A., Science objectives and rationale for the Radiation Belt Storm Probes mission, Space Sci. Rev., 2013, vol. 179, nos. 1–4, pp. 3–27. doi 10.1007/s11214-012-9908-yCrossRefGoogle Scholar
  21. 21.
    McFadden, J.P., Carlson, C.W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., and Angelopoulos, V., The THEMIS ESA plasma instrument and in flight calibration, Space Sci. Rev., 2008, vol. 141, pp. 277–302. doi 10.1007/s11214-008-9440-2CrossRefGoogle Scholar
  22. 22.
    Mizera, P.F. and Blake, J.B., Observations of ring current protons at low altitudes, J. Geophys. Res., 1973, vol. 78, pp. 1058–1062. doi 10.1029/JA078i007p01058CrossRefGoogle Scholar
  23. 23.
    Sckopke, N., A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 1966, vol. 71, no. 13, pp. 3125–3130. doi 10.1029/JZ071i013p03125CrossRefGoogle Scholar
  24. 24.
    Sugiura, M. and Poros, D.J., A magnetospheric field model incorporating the OGO 3 and 5 magnetic field observations, Planet. Space Sci., 1973, vol. 21, pp. 1763–1773. doi 10.1016/0032-0633(73)90167-0CrossRefGoogle Scholar
  25. 25.
    Tverskaya, L.V., Diagnostics of the magnetosphere based on the outer belt relativistic electrons and penetration of solar protons: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 1, pp. 6–23.Google Scholar
  26. 26.
    Tverskoy, B.A., Formation mechanism for the structure of the magnetic-storm ring current, Geomagn. Aeron. (Engl. Transl.), 1997, vol. 37, no. 5, pp. 555–559.Google Scholar
  27. 27.
    Vovchenko, V.V. and Antonova, E.E., Nonlinear disturbance of the dipole field by an axisymmetric plasma distribution, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 6, pp. 739–748.Google Scholar
  28. 28.
    Vovchenko, V.V. and Antonova, E.E., Dependence of volumes of magnetic flux tubes on plasma pressure and disturbance in the magnetic field in the axially symmetric case, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 1, pp. 49–59.Google Scholar
  29. 29.
    Vovchenko, V.V. and Antonova, E.E., Perturbation of the magnetic field in the Earth’s magnetosphere due to plateau creation in the radial distribution of plasma pressure, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 3, pp. 257–265.Google Scholar
  30. 30.
    Wang, C.P., Gkioulidou, M., Lyons, L.R., Wolf, R.A., Angelopoulos, V., Nagai, T., Weygand, J.M., and Lui, A.T.Y., Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: Comparisons between THEMIS-Geotail statistical results and the rice convection model, J. Geophys. Res., 2011, vol. 116. doi 10.1029/2011JA016809Google Scholar
  31. 31.
    Wygant, J., Rowland, D., Singer, H.J., Temerin, M., Mozer, F., and Hudson, M.K., Experimental evidence on the role of the large spatial scale electric field in creating the ring current, J. Geophys. Res., 1998, vol. 103, no. A12, pp. 29527–29544. doi 10.1029/98JA01436CrossRefGoogle Scholar
  32. 32.
    Zhao, H., Li, X., Baker, D.N., et al., The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 7493–7511. doi 10.1002/2015JA021533CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Scobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia

Personalised recommendations