Geochemistry International

, Volume 57, Issue 12, pp 1343–1348 | Cite as

Thermodynamic Properties of Montecellite

  • L. P. OgorodovaEmail author
  • Yu. D. Gritsenko
  • M. F. Vigasina
  • A. Yu. Bychkov
  • D. A. Ksenofontov
  • L. V. Melchakova


A thermochemical study of natural calcium and magnesium orthosilicate monticellite (Ca1.00Mg0.95\({\text{Fe}}_{{0.05}}^{{2 + }}\))[SiO4] from the Khabarovsk Territory, Russia, was carried out on a Tian–Calvet microcalorimeter. The enthalpy of formation from elements Δf\(H_{{{\text{el}}}}^{^\circ }\)(298.15 K) = –2238.4 ± 4.5 kJ/mol was determined by high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of theoretical composition of CaMg[SiO4] are calculated: Δf\(H_{{{\text{el}}}}^{^\circ }\)(298.15 K) = –2248.4 ± 4.5 kJ/mol and Δf\(G_{{{\text{el}}}}^{^\circ }\)(298.15 K) = –2130.5 ± 4.5 kJ/mol.


thermochemistry Calvet microcalorimetry enthalpy of formation monticellite 



  1. 1.
    G. E. Adams and F. C. Bishop, “An experimental investigation of thermodynamic mixing properties and unit–cell parameters of forsterite–monticellite solid solutions,” Am. Mineral. 70, 714–722 (1985).Google Scholar
  2. 2.
    C. Brousse, R. C. Newton, and O. J. Kleppa, “Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry,” Geochim. Cosmochim. Acta 48, 1081–1088 (1984).CrossRefGoogle Scholar
  3. 3.
    A. Chopelas, “Single crystal Raman spectra of forsterite, fayalite, and monticellite,” Am. Mineral. 76, 1101–1109 (1991).Google Scholar
  4. 4.
    N. V. Chukanov, Infrared Spectra of Mineral Species: Exte-nded Library (Springer–Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014).CrossRefGoogle Scholar
  5. 5.
    D. A. Duke and J. D. Stephens, “Infrared investigations of the olivine group minerals,” Am. Mineral. 49, 1388–1406 (1964).Google Scholar
  6. 6.
    W. P. Griffith, “Raman studies on rock–forming minerals. Part I. Orthosilicates and cyclosilicates,” J. Chem. Soc. (A), 1372–1377 (1969).Google Scholar
  7. 7.
    M. Handke, K. Kosinsky, and P. Tarte, “Vibrational spectra and force constants calculations of the isotopic species of MgCaSiO4,” J. Mol. Struct. 115, 401–404 (1984).CrossRefGoogle Scholar
  8. 8.
    T. J. B. Holland, “Dependence of entropy on volume for silicate and oxide minerals review and a predictive model,” Am. Mineral. 74, 5–13 (1989).Google Scholar
  9. 9.
    T. J. B. Holland, and R. Powell, “An enlarged an updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2,” J. Metamorph. Geol. 8, 89–124 (1990).CrossRefGoogle Scholar
  10. 10.
    T. J. B. Holland and R. Powell, “An inrernally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).CrossRefGoogle Scholar
  11. 11.
    T. J. B. Holland and R. Powell, “An improved and extended inrernally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).CrossRefGoogle Scholar
  12. 12.
    I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).Google Scholar
  13. 13.
    I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).Google Scholar
  14. 14.
    L. Liu, “The high–pressure phase transformations of monticellite and implications for upper mantle mineralogy,” Phys. Earth Planet. Int. 20, 25–29 (1979).CrossRefGoogle Scholar
  15. 15.
    K. Mohanan, S. K. Sharma, and F. C. Bishop, “A Raman spectral study of forsterite–monticellite solid solutions,” Am. Mineral. 78, 115–121 (1993).Google Scholar
  16. 16.
    T. Mouri, and M. Enami “Raman spectroscopic study of olivine–group minerals,” J. Mineral. Petrol. Sci. 103, 100–104 (2008).CrossRefGoogle Scholar
  17. 17.
    G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, Reference Book on Thermodynamic Valyes (For Geologists) (Atomizdat, Moscow, 1971) [in Russian].Google Scholar
  18. 18.
    A. Navrotsky, and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).CrossRefGoogle Scholar
  19. 19.
    S. N. Nenasheva and A. A. Agakhanov, “New Data on Minerals from the Shishim Mine, Shishim Mounts, South Urals, Russia,” New Data on Minerals 51, 45–52 (2016).Google Scholar
  20. 20.
    K. J. Neuvonen, “Heat of formation of merwinite and monticellite,” Am. J. Sci. (Bowen Vol.), 373–380 (1952).Google Scholar
  21. 21.
    H. Onken,“Verfeinerung der kristallstruktur von monticellit,“ Tscher. Miner. Petrog.10 (1–4), 34–44 (1965).CrossRefGoogle Scholar
  22. 22.
    T. Pilati, F. Demartin, and C. M. Gramaccioli, “Thermal parameters for minerals of the olivine group: their implication on vibrational spectra, thermodynamic functions and transferable force fields,” Acta Crystallogr. B51, 721–733 (1995).CrossRefGoogle Scholar
  23. 23.
    B. Piriou and P. McMilan, “The high–frequency vibrational spectra of vitreous and crystalline orthosilicates,” Am. Mineral. 68, 426–443 (1983).Google Scholar
  24. 24.
    R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1995).Google Scholar
  25. 25.
    R. A. Robie, B. S. Hemingway, and J. R Fisher, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 1452, (1978).Google Scholar
  26. 26.
    RRUFF Database of Raman Spectroscopy, X–ray Diffraction and Chemistry of Minerals. http://www.rruff. info/Google Scholar
  27. 27.
    Z. D. Sharp, E. J. Essene, L. M. Anovitz, G. W. Metz, E. F. Westrum, Jr., B. S. Hemingway, and J. W. Valley, “The heat capacity of a natural monticellite and phase equilibria in the system CaO–MgO–SiO2–CO2,” Geochim. Cosmochim. Acta 50, 1475–1484 (1986).CrossRefGoogle Scholar
  28. 28.
    Z. D. Sharp R. M. Hazen, and L. W. Finger, “High–pressure crystal chemistry of monticellite, CaMgSiO4,” Am. Mineral. 72, 748–755 (1987).Google Scholar
  29. 29.
    Yu.V. Shvarov, “HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by Windows”, Geochemistry International 46, 834–839 (2008).CrossRefGoogle Scholar
  30. 30.
    V. I. Sinyakov and N. M. Sinyakova, Monticellite skarns of Gornaya Shoria, Zap. Vsesoyuz. Mineral. O-va, No. 6, 720–727 (1961).Google Scholar
  31. 31.
    K. A. Subbotin, L. D. Iskhakova, E. V. Zharikov, and S. V. Lavrishchev, “Investigation of the crystallization features, atomic structure, and microstructure of chromium–doped monticellite,” Crystallogr. Rep. 53 (7), 1107–1111 (2008).CrossRefGoogle Scholar
  32. 32.
    R. D. Warner, and W. C. Luth, “Two–phase data for the join montichellite (CaMgSiO4)–forsterite (Mg2SiO4): experimental results and numerical analysis,” Am. Mineral. 58, 998–1008 (1973).Google Scholar
  33. 33.
    V. A. Zharikov, K. I. Shmulovich, and V. K. Bulatov, “Experimental studies in the system CaO–MgO–Al2O3–SiO2–CO2–H2O and conditions of high-temperature metamorphism,” Tectonophysics 43, 145–162 (1977).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. P. Ogorodova
    • 1
    Email author
  • Yu. D. Gritsenko
    • 1
    • 2
  • M. F. Vigasina
    • 1
  • A. Yu. Bychkov
    • 1
  • D. A. Ksenofontov
    • 1
  • L. V. Melchakova
    • 1
  1. 1.Geological Faculty, Moscow State UniversityMoscowRussia
  2. 2.Fersman Mineralogical Museum, Russian Academy of SciencesMoscowRussia

Personalised recommendations