Advertisement

Geochemistry International

, Volume 57, Issue 6, pp 682–697 | Cite as

Syn-rift Clayey Rocks: Bulk Chemical Composition and Position on Discriminant Paleogeodynamic Diagrams

  • A. V. MaslovEmail author
  • V. N. PodkovyrovEmail author
  • L. N. KotovaEmail author
Article
  • 9 Downloads

Abstract

The paper analyzes the bulk chemical composition and distribution of the fields of syn-rift clayey rocks on a number of discriminant paleogeodynamic diagrams. It is shown that the syn-rift clayey rocks, in general, demonstrate significant variations in the bulk chemical composition. For example, the average SiO2 content varies from 44.74 to 66.42 wt %, the average Al2O3 content varies from 16.62 to 29.92 wt %, and the K2Oaver is in the range 0.24 … 5.77 wt %. Based on the distribution of the data points of syn-rift clayey rocks from various objects in the F1–F2 diagram, it can be assumed that the sources of fine aluminosiliciclastic material were magmatic and sedimentary rocks of a wide composition range. The substantial overlap of the fields of various objects in the classification diagrams [(Na2O + K2O)/Al2O3]–[(Fe2O3tot + MgO)/SiO2] and K/Al–Mg/Al indicates, in general, the similar composition of syn-rift fine-grained clastic rocks of various types of riftogenic structures. The localization of the composition fields of the clayey rocks of different riftogenic structures in such discriminant paleogeodynamic diagrams as K2O/Na2O–SiO2/Al2O3 and SiO2–K2O/Na2O suggests that they cannot be used to discriminate reliably between syn-rift clayey rocks and fine-grained clastic rocks of other geodynamic environments. The position of the syn-rift clayey rocks fields from our database in the diagram DF1–DF2 has its own characteristics. In most cases, they occupy a particular position in the areas characterizing collision and rifting environments, and a number of fields are located in all three classification areas of this diagram. A significant part of the midpoints of the syn-rift clayey rocks is localized in the collision field in the DF1–DF2 diagram. All these facts indicate that the DF1–DF2 diagram also cannot determine the geodynamic nature of terrigenous associations.

Keywords:

syn-rift clayey rocks bulk chemical composition riftogenic structures paleogeodynamic diagrams 

Notes

ACKNOWLEDGMENTS

We are grateful to N. S. Glushkova for preparation of graphical materials.

The studies were supported by the Russian Science Foundation (project no. 16-17-10192).

REFERENCES

  1. 1.
    O. C. Adeigbe and Y. A. Jimoh, “Geochemical fingerprints; implication for provenance, tectonic and depositional settings of Lower Benue Trough Sequence, southeastern Nigeria,” J. Environm. Earth Sci. 3 (10), (2013).Google Scholar
  2. 2.
    S. Agrawal, M. Guevara, and S. P. Verma, “Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements,” Int. Geol. Rev. 50, 1057–1079 (2008).CrossRefGoogle Scholar
  3. 3.
    J. S. Armstrong-Altrin, and S. P. Verma, “Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings,” Sediment. Geol. 177, 115–129 (2005).CrossRefGoogle Scholar
  4. 4.
    J. Arribas, A. Alonso, R. Mas, A. Tortosa, M. Rodas, J. F. Barrenechea, J. Alonso-Azcarate, and R. Artigas, “Sandstone petrography of continental depositional sequences of an intraplate rift basin: Western Cameros basin (North Spain),” J. Sed. Res. 73, 309–327 (2003).CrossRefGoogle Scholar
  5. 5.
    J. Arribas, S. Critelli, and M. J. Johnsson, “Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry,” Geol. Soc. Am. Spec. Pap. 420, (2007).Google Scholar
  6. 6.
    M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91, 611–627 (1983).CrossRefGoogle Scholar
  7. 7.
    M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).CrossRefGoogle Scholar
  8. 8.
    N. P. Chamov, Structure and Evolution of the Middle Russian–Belomorian Province in the Neoproterozoic (GEOS, Moscow, 2016) [in Russian].Google Scholar
  9. 9.
    K. C. Condie, D. Lee, and G. L. Farmer, “Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: constraints from geochemistry, Nd isotopes, and detrital modes,” Sediment. Geol. 141–142, 443–464 (2001).CrossRefGoogle Scholar
  10. 10.
    Continental rifts: evolution, structure, tectonics (1995) Olsen K.H. (Ed.). Elsevier, 465 p.Google Scholar
  11. 11.
    G. Corti, “Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa,” Earth-Sci. Rev. 96, 1–53 (2009).CrossRefGoogle Scholar
  12. 12.
    R. Crossley, “Controls of sedimentation in the Malawi Rift Valley, Central Africa,” Sediment. Geol. 40, 33–50 (1984).CrossRefGoogle Scholar
  13. 13.
    R. L. Cullers and P. Berendsen, “The provenance and chemical variation of sandstones associated with the Mid-Continent Rift System, U.S.A,” Europ. J. Mineral. 10, 987–1002 (1998).CrossRefGoogle Scholar
  14. 14.
    R. L. Cullers and V. N. Podkovyrov, “The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia,” Precambrian Res. 117, 157–183 (2002).CrossRefGoogle Scholar
  15. 15.
    S. M. Elzien, A. A. Farah, A. B. Alhaj, A. A. Mohamed, O. A. O. Al-Imam, A. H. Hussein, M. K. Khalid, B. O. Hamed, and A. B. Alhaj, “Geochemistry of Merkhiyat Sandstones, Omdurman Formation, Sudan: Implication of depositional environment, provenance and tectonic setting,” Int. J. Geol., Agricult. Environ. Sci. 2 (3), 10–15 (2014).Google Scholar
  16. 16.
    A. L. Evans, “Miocene sandstone provenance relations in the Gulf of Suez: insights into synrift unroofing and uplift history,” Am. Ass. Petrol. Geol. Bull. 74, 1386–1400 (1990).Google Scholar
  17. 17.
    C. M. Fedo, H. W.Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance,” J. Geol. 23, 921–924 (1995).CrossRefGoogle Scholar
  18. 18.
    E. Garzanti, G. Vezzoli, S. Ando, and G. Castiglioni, “Petrology of rifted-margin sand (Red Sea and Gulf of Aden, Yemen),” J. Geol. 109, 277–297 (2001).CrossRefGoogle Scholar
  19. 19.
    I. M. Ghandour, H. Masuda, and W. Maejima, “Mineralogical and chemical characteristics of Bajocian-Bathonian shales, G. Al-Maghara, North Sinai, Egypt: climatic and environmental significance,” Geochem. J. 37, 87–108 (2003).CrossRefGoogle Scholar
  20. 20.
    S. Ghosh and S. Sarkar, “Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: clues for provenance,” Chem. Geol. 277, 78–100 (2010).CrossRefGoogle Scholar
  21. 21.
    A. F. Grachev. Rift Zones of the Earth (Nedra, Leningrad, 1987) [in Russian].Google Scholar
  22. 22.
    N. B. Harris, “Evolution of the Congo rift basin, West Africa: an inorganic geochemical record in lacustrine shales,” Basin Res. 12, 425–445 (2000).CrossRefGoogle Scholar
  23. 23.
    S. Hassan, H. Ishiga, B. P. Roser, K. Dozen, and T. Naka, “Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin,” Chem. Geol. 158, 293–314 (1999).CrossRefGoogle Scholar
  24. 24.
    R. N. Hiscott, R. C. L. Wilson, F. M. Gradstein, V. Pujalte, J. Garcia-Mondejar, R. R. Boudreau, and H. A. Wishart, “Comparative stratigraphy and subsidence history of Mesozoic rift basins of North Atlantic,” Am. Ass. Petrol. Geol. Bull. 74, 60–76 (1990).Google Scholar
  25. 25.
    J. H. Illies and G. Greiner, “Rhinegraben and the Alpine system,” Geol. Soc. Am. Bull. 89, 770–782 (1978).CrossRefGoogle Scholar
  26. 26.
    R. V. Ingersoll, W. Cavazza, W. S. Baldridge, and M. Shaficullah, “Cenozoic sedimentation and paleotectonics of north-central New Mexico: Implication for initiation and evolution of the Rio Grande rift,” Geol. Soc. Am. Bull. 102, 1280–1296 (1990).CrossRefGoogle Scholar
  27. 27.
    H. Ishiga, K. Dozen, and Y. Sampei, “Geochemical constraints on marine invasion and provenance change related to the opening of the Japan Sea: an example from the Lower Miocene shales in the Hoda section, Shimane Peninsula, SW Japan,” J. Asian Earth Sci. 17, 443–457 (1999).CrossRefGoogle Scholar
  28. 28.
    V. G. Kazmin, Rift Structure of East Africa: Continental Break-off and Ocean Birth (Nauka, Moscow, 1987) [in Russian].Google Scholar
  29. 29.
    Yu. G. Leonov, “Continental rifting: modern views, problems and solutions,” Geotectonics, 35 (2), 81–92 (2001).Google Scholar
  30. 30.
    Yu. G. Leonov and Yu. A. Volozh, Sedimentary Basins: Methods of Study, Structure, and Evolution (Nauchnyi Mir, Moscow, 2004) [in Russian].Google Scholar
  31. 31.
    N. A. Logachev, “Sedimentary and volcanogenic formations of the Baikal rift zone,” Baikal Rift (Nauka, Moscow, 1968), pp, 72–101 [in Russian].Google Scholar
  32. 32.
    N. A. Logachev, Volcanogenic and Sedimentary Formations of East African Rift Zones (Nauka, Moscow, 1977) [in Russian].Google Scholar
  33. 33.
    J. M. Lopez, G. B. Bauluz, C. Fernandez-Nieto, and A. Y. Oliete, “Factors controlling the trace-element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain),” Chem. Geol. 214, 1–19 (2005).CrossRefGoogle Scholar
  34. 34.
    A. V. Maslov, Sedimentary Complexes of Rift Structures (IGG UrO RAN, Yekaterinburg, 1994) [in Russian].Google Scholar
  35. 35.
    A. V. Maslov, G. A. Mizens, V. N. Podkovyrov, E. Z. Gareev, A. A. Sorokin, Yu. N. Smirnova, and T. M. Sokur, “Synorogenic psammites: major lithochemical features, Lithol. Miner. Resour. 48 (1), 74–98 (2013).CrossRefGoogle Scholar
  36. 36.
    A. V. Maslov, G. A. Mizens, V. N. Podkovyrov, A. D. Nozhkin, T. M. Sokur, A. I. Malinovskii, A. A. Sorokin, Yu. N. Smirnova, E. Z. Gareev, N. V. Dmitrieva, M. T. Krupenin, and E. F. Letnikova, “Synorogenic clay rocks: specifics of bulk composition and paleotectonics,” Geochem. Int. 53 (6), 510–533 (2015).CrossRefGoogle Scholar
  37. 37.
    A. V. Maslov, V. N. Podkovyrov, G. A. Mizens, A. D. Nozhkin, A. M. Fazliakhmetov, A. I. Malinovsky, A. K. Khudoley, L. N. Kotova, A. V. Kuptsova, E. Z. Gareev, and R. I. Zainullin, “Tectonic setting discrimination diagrams for terrigenous rocks: a comparison,” Geochem. Int. 54 (7), 569–583 (2016a).CrossRefGoogle Scholar
  38. 38.
    A. V. Maslov, V. N. Podkovyrov, E. Z. Gareev, and L. N. Kotova, “Bulk chemical composition of sandstones and paleogeodynamic reconstructions,” Litosfera, No. 6, 33–55 (2016b).Google Scholar
  39. 39.
    A. V. Maslov, V. N. Podkovyrov, E. Z. Gareev, and N. D. Sergeeva, Synrift sandstones: specifics of bulk chemical composition and position in the discriminant paleogeodynamic diagrams,” Geodinam. Tektonofiz. 9 (1), 59–80 (2018).CrossRefGoogle Scholar
  40. 40.
    J. B. Maynard, R. Valloni, and Ho Shing Ju, “Composition of modern deep-sea sands from arc-related basin,” J. Geol. Soc. Am. Spec. Publs., No. 10, 551–561 (1982).Google Scholar
  41. 41.
    A. Mazumdar, M. Kocherla, M. A. Carvalho, A. Peketi, R. K. Joshi, P. Mahalaxmi, H. M. Joao, and R. Jisha, “Geochemical characterization of the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: a comparative study of provenance,” Marine Petrol. Geol. 60, 18–33 (2015).CrossRefGoogle Scholar
  42. 42.
    D. P. McKenzie, “Some remarks on the development of continental basins,” Earth Planet. Sci. Lett. 40, 25–32 (1978).CrossRefGoogle Scholar
  43. 43.
    E. E. Milanovsky, Rift Continental Zones (Nedra, Moscow, 1976) [in Russian].Google Scholar
  44. 44.
    E. E. Milanovsky, Rifting in the Earth’s Evolution: (Rifting on Ancient Platforms) (Nedra, Moscow, 1983) [in Russian].Google Scholar
  45. 45.
    C. K. Morley, “Extension, detachments, and sedimentation in continental rifts (with particular reference to East Africa),” Tectonics 8, 1175–1192 (1989).CrossRefGoogle Scholar
  46. 46.
    J. B. Murphy, J. D. Keppie, J. F. Braid, and R. D. Nance, “Geochemistry of the Tremadocian Tiñu Formation (Southern Mexico): provenance in the underlying ~1 Ga Oaxacan Complex on the southern margin of the Rheic Ocean,” Int. Geol. Rev. 47, 887–900 (2005).CrossRefGoogle Scholar
  47. 47.
    G. Ngueutchoua, L. D. Ngantchu, M. Youbi, S. Ngos, V. K. K. Beyala, K. P. Yifomju, and J. C. Tchamgoué, “Geochemistry of Cretaceous mudrocks and sandstones from Douala Sub-Basin, Kumba Area, South West Cameroon: constraints on provenance, source rock weathering, paleo-oxidation conditions and tectonic environment,” Int. J. Geosci. 8, 393–424 (2017).CrossRefGoogle Scholar
  48. 48.
    F. Perri, and T. Ohta, “Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds fromWestern-Central Mediterranean Alpine Chains,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 395, 144–157 (2014).CrossRefGoogle Scholar
  49. 49.
    F. Perri, S. Critelli, G. Mongelli, and R. L. Cullers, “Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudrocks (Sicily, southern Italy),” Int. J. Earth Sci. (Geol. Rundsch.) 100, 1569–1587 (2011).CrossRefGoogle Scholar
  50. 50.
    F. Perri, L. Caracciolo, F. Cavalcante, S. Corrado, S. Critelli, F. Muto, and R. Dominici, “Sedimentary and thermal evolution of the Eocene-Oligocene mudrocks from the southwestern Thrace Basin (NE Greece),” Basin Res. 28, 319–339 (2015).CrossRefGoogle Scholar
  51. 51.
    F. J. Pettijohn, P. Potter, and R. Siver, Sands and Sandstones (Harper and Row, New York, 1973).CrossRefGoogle Scholar
  52. 52.
    N. Pundaree, A. K. Krishna, K. S. V. Subramanyam, S. S. Sawant, S. Kavitha, M. S. Kalpana, D. J. Patil, and A. M. Dayal, “Early Eocene carbonaceous shales of Tadkeshwar Formation, Cambay basin, Gujarat, India: geochemical implications, petrogenesis and tectonics,” Marine Petrol. Geol. 68, 258–268 (2015).CrossRefGoogle Scholar
  53. 53.
    C. Quinlan, “Models of subsidence mechanisms in intra-cratonic basins and their applicability to North America examples,” Sedimentary Basins and Basin Forming Mechanisms, Ed. by C. Beaumont and A. Tankard, Can. Soc. Petrol. Geol. Mem. 12, 463–481 (1987).Google Scholar
  54. 54.
    M. Raza, S. M. Casshyap, and A. Khan, “Geochemistry of Mesoproterozoic Lower Vindhyan Shales from Chittaurgarh, Southeastern Rajasthan and its bearing on source rock composition, palaeoweathering conditions and tectono-sedimentary environments,” J. Geol. Soc. India 60, 505–518 (2002).Google Scholar
  55. 55.
    B. R. Rosendahl, “Architecture of continental rifts with special reference to East Africa,” Ann. Rev. Earth Planet. Sci. 15, 445–503 (1987).CrossRefGoogle Scholar
  56. 56.
    B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).CrossRefGoogle Scholar
  57. 57.
    B. P. Roser and R. J. Korsch, “Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data,” Chem. Geol. 67, 119–139 (1988).CrossRefGoogle Scholar
  58. 58.
    R. W. Schlishe, “Half-graben basin filling models: new constrains on continental extentional basin development,” Basin Res. 3, 123–141 (1991).CrossRefGoogle Scholar
  59. 59.
    W. A. Schoenborn and C. M. Fedo, “Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California,” Chem. Geol. 285, 231–255 (2011).CrossRefGoogle Scholar
  60. 60.
    A. M. C. Sengör, “Sedimentation and tectonics of fossil rifts,” Tectonics of Sedimentary Basins, Ed. by C. J. Busby and R. V. Ingersoll (Blackwell: Oxford, 1995), pp. 53–117.Google Scholar
  61. 61.
    A. M. C. Sengör and B. A. Natal’in, “Rifts of the world,” Mantle Plumes: their Identification through Time, Ed. by R. E. Ernst and K. L. Buchan, Geol. Soc. Am. Spec. Pap. 352, 389–482 (2001).Google Scholar
  62. 62.
    S. R. Taylor, and S. M. MacLennan, Continental Crust: its Composition and Evolution (Blackwell Scientific, Oxford, 1985).Google Scholar
  63. 63.
    S. Turgeon and H.-J. Brumsack, “Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria-Marche basin of central Italy,” Chem. Geol. 234, 321–339 (2006).CrossRefGoogle Scholar
  64. 64.
    W. R. Van Schmus, “Tectonic setting of the Midcontinent Rift system,” Tectonophysics 213, 1–15 (1992).CrossRefGoogle Scholar
  65. 65.
    M. Vdačný, A. Vozárová, and J. Vozár, “Geochemistry of the Permian sandstones from the Malužiná Formation in the Malé Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting,” Geol. Carpathica 64 (1), 23–38 (2013).CrossRefGoogle Scholar
  66. 66.
    S. P. Verma, “Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams,” Turk. J. Earth Sci. 19 (2), 185–238 (2010).Google Scholar
  67. 67.
    S. P. Verma and S. Agrawal, “New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes,” Rev. Mex. Cienc. Geol. 28, 24–44 (2011).Google Scholar
  68. 68.
    S. P. Verma and J. S. Armstrong-Altrin, “New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins,” Chem. Geol. 355, 117–133 (2013).CrossRefGoogle Scholar
  69. 69.
    S. P. Verma, M. Guevara, and S. Agrawal, “Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data,” J. Earth Syst. Sci. 115, 485–528 (2006).CrossRefGoogle Scholar
  70. 70.
    R. C. L. Wilson, R. B. Whitmarsh, B. Taylor, and N. Froitzheim, “Non-volcanic rifting of continental margins: a comparison of evidence from land and sea,” Geol. Soc. (London). Spec. Publ. 187, (2001).Google Scholar
  71. 71.
    T. S. Woelk and W. J. Hinze, “Model of the midcontinent rift system in northeastern Kansas,” Geology 19, 277–280 (1991).CrossRefGoogle Scholar
  72. 72.
    Ya. E. Yudovich, and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].Google Scholar
  73. 73.
    M. N. Zaghloul, S. Critelli, F. Perri, G. Mongelli, V. Perrone, M.Sonnino, M. Tucker, M. Aiello, and C. Ventimiglia, “Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of the Internal Rif Chain, Morocco,” Sedimentology 57, 312–350 (2010).CrossRefGoogle Scholar
  74. 74.
    P. A. Ziegler, “Cenozoic rift system of western and central Europe: an overview,” Geol. Mijnbouw 73, 99–127 (1994).Google Scholar
  75. 75.
    P. A. Ziegler, W. Cavazza, A. H. F. Robertson, and S. Crasquin-Soleau, “Peri-Thethyan rift/wrench basins and passive margins,” Museum National D’Histoire Naturelle. Mem. V. 186. Peri-Tethys Mem. 6, (2001).Google Scholar
  76. 76.
    P. A. Ziegler, and S. A. P. L. Cloetingh, “Dynamic processes controlling evolution of rifted basins,” Earth-Sci. Rev. 64, 1–50 (2004).CrossRefGoogle Scholar
  77. 77.
    G. G. Zuffa, W. Gaudio, and S. Rovito, “Detrital mode evolution of the rifted continental margin Longobucco sequence (Jurassic), Calabrian Arc, Italy,” J. Sed. Petrol. 50, 51–61 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Geology—Subdivision of the Ufa Federal Research Centre, Russian Academy of SciencesUfaRussia
  3. 3.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations