Geochemistry International

, Volume 56, Issue 13, pp 1398–1404 | Cite as

Carbon Isotope Composition of Diamond Crystals Grown Via Redox Mechanism

  • V. N. ReutskyEmail author
  • Yu. N. Palyanov
  • M. Wiedenbeck


We report the carbon isotope compositions of a set of diamond crystals recovered from an investigation of the experimental interaction of metal iron with Mg–Ca carbonate at high temperature and high pressure. Despite using single carbon source with δ13C equal to +0.2‰ VPDB, the diamond crystals show a range of δ13C values from –0.5 to –17.1‰ VPDB. Diamonds grown in the metal-rich part of the system are relatively constant in their carbon isotope compositions (from –0.5 to –6.2‰), whereas those diamonds recovered from the carbonate dominated part of the capsule show a much wider range of δ13C (from –0.5 to –17.1‰). The experimentally observed distribution of diamond’ δ13C using a single carbon source with carbon isotope ratio of marine carbonate is similar to that found in certain classes of natural diamonds. Our data indicate that the δ13C distribution in diamonds that resulted from a redox reaction of marine carbonate with reduced mantle material is hardly distinguishable from the δ13C distribution of mantle diamonds.


diamond experiment redox crystallization carbon isotopes fractionation subduction SIMS 



We thank Yuri Borzdov and Alexander Sokol for they contribution in performing the HTHP experiments. We highly appreciate support from both Frédéric Couffignal and Alexander Rocholl during the measurements with Cameca 1280-HR at GFZ Potsdam. This study was supported by the Russian Science Foundation under Grant no. 14-27-00054.


  1. 1.
    S. Aulbach, T. Stachel, S. K. Viljoen, G. P. Brey, J. W. Harris, Eclogitic and websteritic diamond sources beneath the Limpopo Belt–is slab-melting the link?  Contrib. Mineral. Petrol. 143 (1), 56–70 (2002).CrossRefGoogle Scholar
  2. 2.
    C. Biellmann, P. Gillet, J. Peyronneau, and B. Reynard, “Experimental evidence for carbonate stability in the Earth’s lower mantle,” Earth Planet. Sci. Lett. 118 (1–4), 31–41 (1993).CrossRefGoogle Scholar
  3. 3.
    S. R.Boyd, F. Pineau, and M. Javoy, “Modelling the growth of natural diamonds,” Chem. Geol. 116 (1), 29–42 (1994).CrossRefGoogle Scholar
  4. 4.
    D. Canil and C. M. Scarfe, “Phase relations in peridotite+ CO2 systems to 12 GPa: implications for the origin of kimberlite and carbonate stability in the Earth’s upper mantle,” J. Geophys. Res. Solid Earth, 95 (B10), 15805–15816 (1990).CrossRefGoogle Scholar
  5. 5.
    P. Cartigny, J. W. Harris, and M. Javoy, “Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ 13 C–N concentrations in diamonds,” Earth Planet. Sci. Lett. 185 (1), 85–98 (2001).CrossRefGoogle Scholar
  6. 6.
    A. De Stefano, M. G. Kopylova, P. Cartigny, and V. Afanasiev, “Diamonds and eclogites of the Jericho kimberlite (Northern Canada),” Contrib. Mineral. Petrol. 158 (3), 295–315 (2009).CrossRefGoogle Scholar
  7. 7.
    P. Deines, “The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition,” Geochim. Cosmochim. Acta 44 (7), 943–961 (1980).CrossRefGoogle Scholar
  8. 8.
    E. M. Galimov, “Variations of diamond isotopic composition and its relation to conditions of diamond formation,” Geokhimiya, No. 8, p. 1091–1117 (1984).Google Scholar
  9. 9.
    E. M. Galimov, “Isotope fractionation related to kimberlite magmatism and diamond formation,” Geochim. Cosmochim. Acta 55 (6), 1697–1708 (1991).CrossRefGoogle Scholar
  10. 10.
    E. M. Galimov, V. P. Kuznetsova, K. A. Maltsev, V. V. Gorbachev, and R. B. Zezin, “Isotope composition of diamonds containing diamond inclusions,“ Geochem. Int. 28 (2), 115–121 (1991).Google Scholar
  11. 11.
    B. Harte, I. C. W. Fitzsimons, J. W. Harris, and M. L. Otter, “Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa,” Mineral. Mag. 63 (6), 829–829 (1999).CrossRefGoogle Scholar
  12. 12.
    B. Harte and S. Richardson, “Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland,” Gondwana Res. 21 (1), 236–245 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Horita and V. B. Polyakov, “Carbon-bearing iron phases and the carbon isotope composition of the deep Earth,” Proc. Nation. Acad. Sci. 112 (1), 31–36 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Jacob, E. Jagoutz, D. Lowry, D. Mattey, and G. Kudrjavtseva, “Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust,” Geochim. Cosmochim. Acta 58 (23), 5191–5207 (1994).CrossRefGoogle Scholar
  15. 15.
    A. L. Jaques, A. E. Hall, J. W. Sheraton, C. B. Smith, S. S. Sun, R. M. Drew, C. Foudoulis, and K. Ellingsen, “Composition of crystalline inclusions and C-isotopic composition of Argyle and Ellendale diamonds,” In: Kimberlites and Related Rocks, Ed. by J. Ross, Geol. Soc. Aust., Spec. Publ. 14 (2), 966–989 (1989).Google Scholar
  16. 16.
    F. V. Kaminsky, “Macro- and micro variations of carbon isotope composition of natural diamonds,” Abstracts of VIII Symposium on Stable Isotopes in Geochemistry, (Moscow, 1980), pp. 46–48.Google Scholar
  17. 17.
    M. B. Kirkley, J. J. Gurney, M. L. Otter, S. J. Hill, and L. R. Daniels, “The application of C isotope measurements to the identification of the sources of C in diamonds: a review,” Appl. Geochem. 6 (5), 477–494 (1991).CrossRefGoogle Scholar
  18. 18.
    K. T. Koga, J. A. Van Orman, and M. J. Walter, “Diffusive relaxation of carbon and nitrogen isotope heterogeneity in diamond: a new thermochronometer,” Phys. Earth Planet. Inter. 139 (1–2), 35–43 (2003).CrossRefGoogle Scholar
  19. 19.
    Y. N. Palyanov, Y. V. Bataleva, A. G. Sokol, Y. M. Borzdov, I. N. Kupriyanov, V. N. Reutsky, and N. V. Sobolev, “Mantle–slab interaction and redox mechanism of diamond formation,” Proc. National Acad. Sci. 110 (51), 20408–20413 (2013).CrossRefGoogle Scholar
  20. 20.
    V. N. Reutsky, B. Harte, Y. M. Borzdov, and Y. N. Palyanov, “Monitoring diamond crystal growth, a combined experimental and SIMS study,” Eur. J. Mineral. 20 (3), 365–374 (2008).CrossRefGoogle Scholar
  21. 21.
    V. N. Reutsky, A. A. Shiryaev, S. V. Titkov, M. Wiedenbeck, and N. N. Zudina, “Evidence for large scale fractionation of carbon isotopes and of nitrogen impurity during crystallization of gem quality cubic diamonds from placers of North Yakutia,” Geochem. Int. 55 (11), 988–999 (2017b).CrossRefGoogle Scholar
  22. 22.
    V. N. Reutsky, P. M. Kowalski, Y. N. Palyanov, and M. Wiedenbeck, “Experimental and theoretical evidence for surface-induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures,“ Crystals, 7 (7), 190 (2017a).CrossRefGoogle Scholar
  23. 23.
    V. N. Reutsky, Y. M. Borzdov, and Y. N. Palyanov, “Carbon isotope fractionation during high pressure and high temperature crystallization of Fe–C melt,” Chem. Geol. 406, 18–24 (2015b).CrossRefGoogle Scholar
  24. 24.
    V. N. Reutsky, Y. M. Borzdov, and Y. N. Palyanov, “Effect of diamond growth rate on carbon isotope fractionation in Fe–Ni–C system,” Diamond Relat. Mater. 21, 7–10 (2012).CrossRefGoogle Scholar
  25. 25.
    V. N. Reutsky, Y. N. Palyanov, Y. M. Borzdov, and A. G. Sokol, “Isotope fractionation of carbon during diamond crystallization in model systems,” Russ. Geol. Geophys. 56 (1), 239–244 (2015a).CrossRefGoogle Scholar
  26. 26.
    M. Schidlowski, R. Eichmann, and C. E. Junge, “Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget,” Precambrian Res. 2 (1), 1–69 (1975).CrossRefGoogle Scholar
  27. 27.
    V. S. Shatsky, D. A. Zedgenizov, and A. L. Ragozin, “Evidence for a subduction component in the diamond-bearing mantle of the Siberian craton,” Russ. Geol. Geophys. 57 (1), 111–126 (2016).CrossRefGoogle Scholar
  28. 28.
    S. B. Shirey, P. Cartigny, D. J. Frost, S. Keshav, F. Nestola, P. Nimis, D. G. Pearson, N. V. Sobolev, and M. J. Walter, “Diamonds and the geology of mantle carbon,” Rev. Mineral. Geochem. 75 (1), 355–421 (2013).CrossRefGoogle Scholar
  29. 29.
    V. S. Sobolev, and N. V. Sobolev, “New evidence of the sinking to great depths of the eclogitized rocks of Earth’s crust,” Dokl Akad Nauk SSSR 250 (3), 683–685 (1980).Google Scholar
  30. 30.
    A. G. Sokol, Y. M. Borzdov, Y. N. Palyanov, and A. F. Khokhryakov, “High-temperature calibration of a multi-anvil high pressure apparatus,” High Pressure Res. 35 (2), 139–147 (2015).CrossRefGoogle Scholar
  31. 31.
    T. Stachel and J. W. Harris, “The origin of cratonic diamonds–constraints from mineral inclusions,” Ore Geol. Rev. 34 (1), 5–32 (2008).CrossRefGoogle Scholar
  32. 32.
    T. Stachel, J. Harris, S. Aulbach, and P. Deines, “Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds,” Contrib. Mineral. Petrol. 142 (4), 465–475 (2002).CrossRefGoogle Scholar
  33. 33.
    T. Stachel, J. W. Harris, and K. Muehlenbachs, “Sources of carbon in inclusion bearing diamonds,” Lithos 112, 625–637 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. N. Reutsky
    • 1
    Email author
  • Yu. N. Palyanov
    • 1
  • M. Wiedenbeck
    • 2
  1. 1.Sobolev Institute of Geology and MineralogyNovosibirskRussia
  2. 2.Deutsches GeoForschungsZentrum GFZTelegrafenbergGermany

Personalised recommendations