Geochemistry International

, Volume 56, Issue 13, pp 1384–1397 | Cite as

Noble Gases, Nitrogen and Carbon Isotopic Compositions of the Ghubara Meteorite, Revealed by Stepwise Combustion and Crushing Methods

  • E. V. KorochantsevaEmail author
  • A. I. Buikin
  • A. B. Verchovsky
  • C. A. Lorenz
  • A. V. Korochantsev


The Ghubara meteorite contains abundant trapped gases in voids of highly retentive phases that can be released by stepwise crushing and thermal degassing. Their composition is dominated by the solar wind component and by radiogenic argon. We favor a scenario in which a large impact event on L-chondrite asteroid 470 Ma ago caused release, mobilization, fractionation and redistribution of accumulated gases on the Ghubara parent body. The Ghubara breccia was formed at that event and occluded trapped gases into the voids. The uncommonly high 20Ne/36Ar ratios of the analysed samples compared to the solar composition is considered to be due to trapping of gases released from surrounding rocks that lost light noble gases preferentially over the heavy ones. The 4He/20Ne and 4He/36Ar ratios, being as usually lower than in solar wind, gradually increase during stepped crushing, indicating non equilibrium distribution of the gases between the voids of different sizes that can be caused by the dynamics of the shock metamorphism process. The neon isotopic composition released by stepwise crushing and combustion is a mixture of two components: solar dominating trapped and cosmogenic Ne. The former component is mainly degassed in the initial crushing steps opening the large inclusions/voids, while the relative contribution of the latter, likely released from galactic cosmic ray produced tracks, increases with progressive crushing. During stepwise combustion the same trend in the release of the Ne components with increasing temperature is observed. The nitrogen and carbon abundances as well as their isotopic compositions in Ghubara are usual for ordinary chondrites. Most of nitrogen is chemically bounded and associated with carbon. The delivery time of Ghubara from the parent body asteroid to the Earth calculated from its exposure age is 9–28 Ma.


meteorites L-chondrite parent body noble gases nitrogen carbon trapped extraterrestrial argon 



The editorial handling by an anonymous reviewer helped improve the quality of this manuscript. Authors acknowledge support by RFBR grant no. 17-05-01078.


  1. 1.
    A. I. Buikin, A. B. Verchovsky, C. A. Lorenz, A. Ya. Skripnik, and E. V. Korochantseva, “Noble gases and nitrogen released by crushing from Pesyanoe aubrite,” 44th Lunar and Planetary Science Conference, abstract #1141 (2013).Google Scholar
  2. 2.
    A. I. Buikin, J. Hopp, C. A. Lorenz, and M. Trieloff, “Noble gas isotope composition and elemental ratios in Pesyanoe aubrite: stepwise crushing data (abstract),” Meteorit. Planet. Sci. 50, #5110 (2015).Google Scholar
  3. 3.
    A. I. Buikin, N. A. Migdisova, J. Hopp, E. V. Korochantseva, and M. Trieloff, “He, Ne, Ar stepwise crushing data on basalt glasses from different segments of Bouvet Triple Junction,” Geochem.Int. 55, 977–987 (2017).CrossRefGoogle Scholar
  4. 4.
    A. I. Buikin, A. I. Kamaleeva, and N. V. Sorohtina, “On the separation efficiency of entrapped and in situ noble gas components at sample crushing in vacuum,” Geochem. Int. 56, 601–607 (2018).CrossRefGoogle Scholar
  5. 5.
    R. T. Dodd, Meteorites—a Petrologic–Chemical Synthesis (Cambridge University Press, Cambridge–New York, 1981).Google Scholar
  6. 6.
    P. Eberhardt, O. Eugster, and K. Marti, “A redetermination of the isotopic composition of atmospheric neon,” Z. Naturforsch. Teil A 20, 623–624 (1965).Google Scholar
  7. 7.
    O. Eugster, “Cosmic –ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr –Kr exposure ages,” Geochim. Cosmochim. Acta 52, 1649–1662 (1988).CrossRefGoogle Scholar
  8. 8.
    O. Eugster and Th. Michel, “Common asteroid break –up events of eucrites, diogenites, and howardites and cosmic–ray production rates for noble gases in achondrites,” Geochim. Cosmochim. Acta. 59, 177–199 (1995).CrossRefGoogle Scholar
  9. 9.
    O. Eugster, J. Beer, M. Burger, R. C. Finkel, H. J. Hof-mann, U. Krähenbühl, Th. Michel, H. A. Synal, and W. Wölfli, “History of the paired lunar meteorites MAC88104 and MAC88105 derived from noble gas isotopes, radionuclides, and some chemical abundances,” Geochim. Cosmochim. Acta. 55, 3139–3148 (1991).CrossRefGoogle Scholar
  10. 10.
    O. Eugster, Th. Michel, and S. Niedermann, “Solar wind and cosmic ray exposure history of lunar meteorite Yamato-793274,” Proceedings of the National Institute for Polar Research Symposium on Antarctic Meteorites 5, 23–35 (1992).Google Scholar
  11. 11.
    O. Eugster, Ch. Thalmann, A. Albrecht, G. F. Herzog, J. S. Delaney, J. Klein, and R. Middleton, “Exposure history of glass and breccia phases of lunar meteorite EET87521,” Meteorit. Planet. Sci 31, 299–304 (1996).CrossRefGoogle Scholar
  12. 12.
    T. E. Ferko, M. –S. Wang, D. J. Hillegonds, M. E. Lipschutz, R. Hutchison, L. Franke, P. Scherer, L. Schultz, P. H. Benoit, D. W. G. Sears, A. K. Singhvi, and N. Bhandari, “The irradiation history of the Ghubara (L5) regolith breccias,” Meteorit. Planet. Sci 37, 311–327 (2002).CrossRefGoogle Scholar
  13. 13.
    K. Gopalan and M. N. Rao, “Rare gases in Bansur, Udaipur and Madhipura chondrites,” Meteoritics 11, 131 –136 (1976).CrossRefGoogle Scholar
  14. 14.
    M. M. Grady and I. P. Wright, “Elemental and isotopic abundances of carbon and nitrogen in meteorites,” Space Sci. Rev. 106, 231–248 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Grimberg, H. Baur, P. Bochsler, F. Bühler, D. S. Burnett, C. C. Hays, V. S. Heber, A. J. G. Jurewicz, and R. Wieler, “Solar wind neon from Genesis: implications for the lunar noble gas record,” Science 314, 1133–1135 (2006).CrossRefGoogle Scholar
  16. 16.
    V. S. Heber, R. Wieler, H. Baur, C. Olinger, T. A. Friedmann, and D. S. Burnett, “Noble gas composition of the solar wind as collected by the Genesis mission,” Geochim. Cosmochim. Acta 73, 7414–7432 (2009).CrossRefGoogle Scholar
  17. 17.
    J. Hopp, M. Trieloff, U. Ott, E. V. Korochantseva, and A. I. Buykin, “39Ar –40Ar chronology of the enstatite chondirte parent bodies,” Meteorit. Planet. Sci. 49, 358 –372 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Jambon, H. Weber, and O. Braun, “Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C: geochemical implications,” Geochim. Cosmochim. Acta. 50, 401–408 (1986).CrossRefGoogle Scholar
  19. 19.
    E. V. Korochantseva, M. Trieloff, A. I. Buikin, J. Hopp and H.-P. Meyer, “40Ar/39Ar dating and cosmic –ray exposure time of desert meteorites: Dhofar 300 and Dhofar 007 eucrites and anomalous achondrite NWA 011,” Meteorit. Planet. Sci. 40, 1433 –1454 (2005).CrossRefGoogle Scholar
  20. 20.
    E. V. Korochantseva, M. Trieloff, C. A. Lorenz, A. I. Buykin, M. A. Ivanova, W. H. Schwarz, J. Hopp, and E. K. Jessberger, “L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar –39Ar dating,” Meteorit. Planet. Sci. 42, 113–130 (2007).CrossRefGoogle Scholar
  21. 21.
    E. V. Korochantseva, A. I. Buikin, A. B. Verchovsky, J. Hopp, A. V.Korochantsev, M. Anand, and M. Trieloff, “Noble Gas, N and C stepwise heating and crushing data for the lunar meteorite Dhofar 1436,” Meteorit. Planet. Sci. 52, #6258 (2017a).Google Scholar
  22. 22.
    E. V. Korochantseva, A. I. Buikin, and M. Trieloff, “Trapped extraterrestrial argon in meteorites,” Geochem. Int. 55, 971–976 (2017b).CrossRefGoogle Scholar
  23. 23.
    I. Leya, and J. Masarik, “Cosmogenic nuclides in stony meteorites revisited,” Meteorit. Planet. Sci. 44, 1061–1086 (2009).CrossRefGoogle Scholar
  24. 24.
    C. A. Lorenz, E. V. Korochantseva, N. N. Kononkova, and T. G. Kuzmina, “Two new achondritic inclusions in the L5 chondrite Tsarev,” Meteorit. Planet. Sci. 53, #6066 (2018).Google Scholar
  25. 25.
    O. K. Manuel and P. K. Kuroda, “Isotopic composition of the rare gases in the Fayetteville meteorite,” J. Geophys. Res. 69, 1413–1419 (1964).CrossRefGoogle Scholar
  26. 26.
    B. Marty and L. Zimmermann, “Volatiles (H, C, N, Ar) in mid ocean ridge basalts: assessment of shallow level fractionation and characterization of source composition,” Geochim. Cosmochim. Acta. 63, 3619–3633 (1999).CrossRefGoogle Scholar
  27. 27.
    T. Matsumoto, A. Seta, J. Matsuda, M. Takebe, Y. Chen, and S. Arai, “Helium in the Archean komatiites revisited: significantly high 3He/4He ratios revealed by fractional crushing gas extraction,” Earth Planet. Sci. Lett. 196, 213 –225 (2002).CrossRefGoogle Scholar
  28. 28.
    H. Y. McSween, Jr. D. W. G. Sears, and R. T. Dodd, “Thermal metamorphism,” Meteorites and the Early Solar System (Univ. Arizona, Tusco, 1988), pp. 102–113.Google Scholar
  29. 29.
    M. Moreira and P. Madureira, “Cosmogenic helium and neon in 11 Myr old ultramafic xenoliths: Consequences for mantle signatures in old samples,” Geochem. Geophys. Geosyst. 6, (2005). doi 10.1029/2005GC000939Google Scholar
  30. 30.
    J. Mortimer, A. B. Verchovsky, and M. Anand, “Predominantly non-solar origin of nitrogen in lunar soils,” Geochim. Cosmochim. Acta.193, 36–53 (2016).CrossRefGoogle Scholar
  31. 31.
    C. T. Pillinger, R. C. Greenwood, D. Johnson, J. M. Gibson, A. G. Tindle, A. B. Verchovsky, A. I. Buikin, I. A. Franchi, and M. M. Grady, “Light element geochemistry of the Chelyabinsk meteorite,” Geochem. Int. 51, 540–548 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Pun, K. Keil, G. J. Taylor, and R. Wieler, “The Kapoeta howardite: Implications for the regolith evolution of the howardite–eucrite–diogenite parent body,” Meteorit. Planet. Sci 33, 835–851 (1998).CrossRefGoogle Scholar
  33. 33.
    P. Scarsi, “Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: Effects on the 3He/4He measured ratio,” Geochim. Cosmochim. Acta. 64, 3751–3762 (2000).CrossRefGoogle Scholar
  34. 34.
    L. Schultz and L. Franke, “Helium, neon, and argon in meteorites: a data collection,” Meteorit. Planet. Sci. 39, 1889–1890 (2004).CrossRefGoogle Scholar
  35. 35.
    D. Stöffler, K. Keil, and E. R. D. Scott, “Shock metamorphism of ordinary chondrites,” Geochim. Cosmochim. Acta. 55, 3845–3867 (1991).CrossRefGoogle Scholar
  36. 36.
    N. Takaoka, T. Nakamura, and K. Nagao, “A possible site trapping noble gases in Happy Canyon enstatite chondrite: Microbubbles,” 21st Symposium on Antarctic Meteorites, 167–169 (1996).Google Scholar
  37. 37.
    M. Trieloff, A. Deutsch, J. Kunz, and E. K. Jessberger, “Redistribution of potassium and radiogenic argon by moderate shock pressures in experimentally shocked gabbro,” Meteoritics 29, 541 (1994).Google Scholar
  38. 38.
    M. Trieloff, E. V. Korochantseva, A. I. Buikin, J. Hopp, M. A. Ivanova, and A. V. Korochantsev, “The Chelyabinsk meteorite: thermal history and variable shock effects recorded by the 40Ar–39Ar system,” Meteorit. Planet. Sci. 53, 343–358 (2018).CrossRefGoogle Scholar
  39. 39.
    A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova, and C. T. Pillinger, “Heterogeneous distribution of xenon–HL within presolar diamonds,” Meteorit. Planet. Sci. 32, A131–A132 (1997).Google Scholar
  40. 40.
    A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova, I. P. Wright, M. R. Lee, C. T. Pillinger, “C, N, and noble gas isotopes in grain size separates of presolar diamonds from Efremovka,” Science 281, 1165–1168 (1998).CrossRefGoogle Scholar
  41. 41.
    A. B. Verchovsky, M. A. Sephton, I. P. Wright, and C. T. Pillinger, “Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion,” Earth Planet. Sci. Lett. 199, 243–255 (2002).CrossRefGoogle Scholar
  42. 42.
    J. T. Wasson and G. W. Kallemeyn, “Composition of chondrites,” Philos. Trans. Royal Soc. A 325, 535–544 (1988).CrossRefGoogle Scholar
  43. 43.
    J. R. Weirich, T. D. Swindle, and C. E. Isachsen, “40Ar –39Ar age of Northwest Africa 091: More evidence for a link between L chondrites and fossil meteorites,” Meteorit. Planet. Sci. 47, 1324 –1335 (2012).CrossRefGoogle Scholar
  44. 44.
    R. Wieler, “Cosmic-ray-produced noble gases in meteorites,” Noble Gases, Ed. by D. P. Porcelli, C. J. Ballentine, and R. P. Wieler, Rev. Mineral. Geochem. 47, 125–170 (2002).Google Scholar
  45. 45.
    R. Wieler, H. Baur, and P. Signer, “Noble gases from solar energetic particles revealed by closed system stepwise etching of lunar soil minerals,” Geochim. Cosmochim. Acta 50, 1997–2017 (1986).CrossRefGoogle Scholar
  46. 46.
    Q.-Z. Yin, Q. Zhou, Q.-L. Li, Y. Liu, G.-Q. Tang, A. N. Krot, and P. Jenniskens, “Records of the Moon—forming impact and the 470 Ma disruption of the L chondrite parent body in the asteroid belt form U–Pb apatite ages of Novato (L6),” Meteorit. Planet. Sci. 49, 1426 –1439 (2014).CrossRefGoogle Scholar
  47. 47.
    R. Yokochi, B. Marty, R. Pik, and P. Burnard “High 3He/4He ratios in peridotite xenoliths from SW Japan revisited: Evidence for cosmogenic 3He released by vacuum crushing,” Geochem. Geophys. Geosyst. 6, 2005. doi 10.1029/2004GC000836Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Korochantseva
    • 1
    Email author
  • A. I. Buikin
    • 1
  • A. B. Verchovsky
    • 2
  • C. A. Lorenz
    • 1
  • A. V. Korochantsev
    • 1
  1. 1.Vernadsky Institute of GeochemistryMoscowRussia
  2. 2.School of Physical Sciences, The Open UniversityMilton KeynesUK

Personalised recommendations