Advertisement

Geochemistry International

, Volume 56, Issue 13, pp 1322–1340 | Cite as

Genetic Interpretation of the Distribution of PGE and Chalcogens in Sulfide-Mineralized Ultramafic Rocks from the Yoko-Dovyren Layered Intrusion

  • A. A. Ariskin
  • G. S. Nikolaev
  • L. V. Danyushevsky
  • M. Fiorentini
  • E. V. Kislov
  • I. V. Pshenitsyn
Article
  • 34 Downloads

Abstract

The paper presents newly acquired data on concentrations of chalcophile elements and chalcogens (Se and Te) in sulfide-bearing rocks and Cu–Ni ores from the bottom portion of the Yoko-Dovyren Massif, northern Baikal area, Russia. Positive covariations between Pd, Pt, Au, S, and Te in the samples highlight sulfide control on the behavior of these elements, which was related to the redistribution of essentially Fe–Ni sulfide liquids at a magmatic stage. The character of relationships between Pd, Pt, Te, Cu, and S in the rocks led us to distinguish two groups of genetic trends: the first group combines samples from the chilled zone, plagioperidotites, and olivine gabbronorites that compose underlying sills in the central part of the intrusion, and the second one comprises poor and high-grade ores in the northeastern termination of the intrusion (Ozernyi Prospect). We put forward the hypothesis that the first-group trends reflect different degrees of accumulation of crystallization products of the most primitive sulfide liquids, whereas the trends of the second group pertain to sulfide matter significantly depleted in Cu, Te, and PGE. New data on Fe, Ni, Cu, Co, Se, Te, Zn, Mo, Ag, Cd, Sb, Pb, Rh, PGE, and Au concentrations in sulfides from the chilled gabbronorite and ores of the Baikalskoe deposit are presented. Results of thermodynamic modeling (with the COMAGMAT-5 program package) of sulfide saturation in the intercumulus of a primitive orthocumulate are used to reproduce the composition (Cu, Pd, Pt, Au, and Te) of the parental sulfide liquid. The model concentrations of noble metals in the sulfide are demonstrated to be one to two orders of magnitude higher than the concentrations in the “average sulfide” estimated by LA–ICP–MS. More realistic estimates for the composition of the parental sulfide liquids can be obtained by normalizing the bulk concentrations of these elements to 100% sulfide mass. These estimates are in good agreement with results from thermodynamic simulations.

Keywords:

Yoko-Dovyren intrusion ultramafic rocks Cu–Ni ores PGE chalcogens LA–ICP–MS primitive sulfide numerical simulations COMAGMAT-5 

Notes

ACKNOWLEDGMENTS

The authors thank O.A. Lukanin, as a reviewer of the manuscript, and E.M. Spiridonov for valuable comments on the content of this work. This study was financially supported by the Russian Science Foundation, Grant 16-17-10129. This is contribution 1176 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au).

REFERENCES

  1. 1.
    A. A. Ariskin, E. G. Konnikov, L. V. Danyushevsky, E. V. Kislov, G. S. Nikolaev, D. A. Orsoev, G. S. Barmina, and K. A. Bychkov, “The Dovyren intrusive complex: problems of petrology and Ni sulfide mineralization,” Geochem. Int. 47 (5), 425–453 (2009).CrossRefGoogle Scholar
  2. 2.
    A. A. Ariskin, Yu. A. Kostitsyn, E. G. Konnikov, L. V. Danyushevsky, S. Meffre, G. S. Nikolaev, A. McNeill, E. V. Kislov, and D. A. Orsoev, “Geochronology of the Dovyren Intrusive Complex, northwestern Baikal Area, Russia, in the Neoproterozoic,” Geochem. Int. 51 (11), 859–875 (2013).CrossRefGoogle Scholar
  3. 3.
    A. A. Ariskin, L. V. Danyushevsky, K. A. Bychkov, A. W. McNeill, G. S. Barmina, and G. S. Nikolaev, “Modeling solubility of Fe-Ni sulfides in basaltic magmas: the effect of Ni in the melt,” Econ. Geol., 108 (8), 1983–2003 (2013).CrossRefGoogle Scholar
  4. 4.
    A. A. Ariskin, L. V. Danyushevsky, E. G. Konnikov, R. Maas, Yu. A. Kostitsyn, S. Meffre, G. S. Nikolaev, and E. V. Kislov, “The Dovyren intrusive complex (northern Baikal region, Russia): isotope–geochemical markers of contamination of parental magmas and extreme enrichment of the source,” Russ. Geol. and Geophys. 56 (3), 411–434 (2015a).CrossRefGoogle Scholar
  5. 5.
    A. A. Ariskin, G. S. Nikolaev, L. V. Danyushevsky, E. V. Kislov, A. V. Malyshev, and G. S. Barmina, “A new type of low-sulfide PGE-mineralization in the primitive troctolites of the Yoko-Dovyren layered massif,” in Proceedings of 12 th All-Russia Petrographic Conference, Petrozavodsk, Russia, 2015 (Petrozavodsk, 2015), pp. 289–291 (2015b).Google Scholar
  6. 6.
    A. A. Ariskin, E. V. Kislov, L. V. Danyushevsky, G. S. Nikolaev, M. Fiorentini, S. Gilbert, K. Goemann, and A. Malyshev, “Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy,” Mineral. Deposita 51, 993–1011 (2016).CrossRefGoogle Scholar
  7. 7.
    A. A. Ariskin, K. A. Bychkov, and G. S. Nikolaev, “Modeling of trace-element composition of sulfide liquid in a crystallizing basalt magma: development of the R-Factor concept,” Geochem. Int. 55 (5), 465–473 (2017).CrossRefGoogle Scholar
  8. 8.
    A. A. Ariskin, K. A. Bychkov, G. S. Nikolaev, and G. S. Barmina, “The COMAGMAT-5: Modeling the effect of Fe-Ni sulfide immiscibility in crystallizing magmas and cumulates,” J. Petrol. 59, 283–298 (2018a).CrossRefGoogle Scholar
  9. 9.
    A. A. Ariskin, G. S. Nikolaev, L. V. Danyushevsky, M. Fiorentini, E. V. Kislov, and I. V. Pshenitsyn, “Geochemical evidence for the fractionation of iridium group elements at the early stages of crystallization of the Dovyren magmas (northern Baikal area, Russia),” Russ. Geol. Geophys. 59 (5), 459–471 (2018b).CrossRefGoogle Scholar
  10. 10.
    A. L. Ariskin, Danyushevsky, G. Nikolaev, E. Kislov, M. Fiorentini, A. McNeill, Yu. Kostitsyn, K. Goemann, S. Feig, and A. Malyshev, “The Dovyren Intrusive Complex (Southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility,” Lithos, 302303, 242–262 (2018b).CrossRefGoogle Scholar
  11. 11.
    S.-J. Barnes and E. M. Ripley, “Highly siderophile and strongly chalcophile elements in magmatic ore deposits,” Rev. Mineral. Geochem. 81, 725–774 (2016).CrossRefGoogle Scholar
  12. 12.
    S. J. Barnes, J. E. Mungall, M. LeVaillant, B. Godel, C. M. Lesher, D. Holwell, P. C. Lightfoot, N. Krivolutskaya, and B. Wei, “Sulfide-silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: disseminated and net-textured ores,” Am. Mineral. 102, 473–506 (2017).CrossRefGoogle Scholar
  13. 13.
    S.-J. Barnes, H. M. Prichard, R. A. Cox, P. C. Fisher, and B. Godel, “The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits,” Chem. Geol. 248 (3–4), 295–317 (2008).CrossRefGoogle Scholar
  14. 14.
    S.-J. Barnes and P. C. Lightfoot, “Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents,” Econ. Geol., Ed. by J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards, 100th Anniversary Volume, 179–213 (2005).Google Scholar
  15. 15.
    I. H. Campbell and A. J. Naldrett, “The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides,” Econ. Geol. 74 (6), 1503–1506 (1979).CrossRefGoogle Scholar
  16. 16.
    L. V. Danyushevsky, P. Robinson, S. Gilbert, M. Norman, R. Large, P. McGoldrick, and J. M. G. Shelley, “Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects,” Geochem. Explor. Environ. Anal. 11, 51–60 (2011).CrossRefGoogle Scholar
  17. 17.
    V. V. Distler, and A. G Stepin, “Low-sulfide PGE-bearing horizon of the Yoko-Dovyren layered basite–hyperbasite intrusion, Norhern Baikal region,” Dokl. Akad. Nauk 328 (4), 498-501 (1993).Google Scholar
  18. 18.
    S. Gilbert, L. Danyushevsky, P. Robinson, C. Wohlgemuth-Ueberwasser, N. Pearson, D. Savard, M. Norman, and J. Hanley, “A comparative study of five reference materials and the Lombard meteorite for the determination of the platinum-group elements and gold by LA-ICP-MS,” Geostand Geoanal Res. 37, 51–64 (2013).CrossRefGoogle Scholar
  19. 19.
    A. I. Glotov, E. V. Kislov, D. A. Orsoev, M. Yu. Podlipskii, A. P. Pertseva, and V. I. Zyuzin, “Sulfur isotope geochemistry in different types of mineralization of the Yoko-Dovyren massif, Northern Baikal region,” Geol. Geofiz., 39 (2), 228–233 (1998).Google Scholar
  20. 20.
    M. L. Guillong, Danyushevsky, M. Waelle, and M. Raveggi, “The effect of quadrupole ICPMS interface and ion lens design on argide formation. Implications for LA-ICPMS analysis of PGE’s in geological samples,” J. Anal. Atom. Spec. 26, 1401 (2011).CrossRefGoogle Scholar
  21. 21.
    D. A. Holwell and R. R. Keays, “The formation of low-volume, high-tenor magmatic PGE–Au sulfide mineralization in closed systems: evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard Intrusion, East Greenland,” Econ. Geol. 109 (2), 387–406 (2014).CrossRefGoogle Scholar
  22. 22.
    D. A. Holwell and I. McDonald, “A review of the behaviour of platinum group elements within natural magmatic sulfide ore systems. The importance of semimetals in governing partitioning behavior,” Platinum Metals Rev. 54 (1), 26–36 (2010).CrossRefGoogle Scholar
  23. 23.
    D. A. Holwell, R. R. Keays, I. McDonald, and M. R. Williams, “Extreme enrichment of Se, Te, PGE and Au in Cu sulfde microdroplets: evidence from LA‑ICP‑MS analysis of sulfdes in the Skaergaard Intrusion, east Greenland,” Contrib. Mineral. Petrol. 170, 53 (2015). doi 10.1007/s00410-015-1203-yCrossRefGoogle Scholar
  24. 24.
    L. N. Kacharovskaya, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Ulan-Ude, 1986).Google Scholar
  25. 25.
    E. V. Kislov, Yoko-Dovyren Layered Massif (Buryat. Nauchn. Ts., Ulan-Ude, 1998) [in Russian].Google Scholar
  26. 26.
    E. G. Konnikov, W. P. Meurer, S. S. Neruchev, E. M. Prasolov, E. V. Kislov, and D. A. Orsoev, “Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic–ultramafic layered complex, Eastern Siberia, Russia,” Mineral. Deposita 35, 526–532 (2000).CrossRefGoogle Scholar
  27. 27.
    H. P. Longerich S. E Jackson, and D. Gunther, “Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation,” J. Analyt. Atom. Spectrom. 11, 899–904 (1996).CrossRefGoogle Scholar
  28. 28.
    J. E. Mungall J. M Brenan, “Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements,” Geochim. Cosmochim. Acta 125, 265–289 (2014).Google Scholar
  29. 29.
    D. A. Orsoev, N. S. Rudashevsky, Yu. L. Kretser, and E. G. Konnikov, “Precious metal mineralization in low-sulfide ores of the Ioko–Dovyren layered massif, Northern Baikal Region,” Dokl. Earath Sci. 390 (2), 545–549 (2003). (2003)Google Scholar
  30. 30.
    C. Patten, S.-J. Barnes, E. A. Mathez, and F. E. Jenner, “Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets,” Chem. Geol. 358, 170–188 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Queffurus and S-J. Barnes, “Processes affecting the sulfur to selenium ratio in magmatic nickel–copper and platinum-group element deposits,” Ore Geol. Rev. 69, 301–324 (2015).CrossRefGoogle Scholar
  32. 32.
    E. F. Sinyakova, V. I. Kosyakov, A. S. Borisenko, and N. S. Karmanov, “Behavior of trace noble metals during fractional crystallization of Cu–Fe–Ni–(Pt, Pd, Rh, Ir, Ru, Ag, Au, Te) sulfide melts,” Russ. Geol. Geophys. (in press).Google Scholar
  33. 33.
    J. W. Smith, D. A. Holwell, I. McDonald, and A. J. Boyce, “The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex,” Ore Geol. Rev. 73, 148–174 (2016).CrossRefGoogle Scholar
  34. 34.
    E. M. Spiridonov, “Ore-magmatic systems of the Noril’sk ore field,” Russ. Geol. Geophys. 51 (9), 1059–1077 (2010).CrossRefGoogle Scholar
  35. 35.
    E. M. Spiridonov, A. A. Ariskin, E. V. Kislov, N. N. Korotaeva, G. S. Nikolaev, I. V. Pshenitsyn, and V. O. Yapaskurt, “Laurite and Ir-osmium from plagioclase lherzolite of the Yoko-Dovyren mafic-ultramafic pluton,” Northern Baikal region, Geol. Ore Deposits, 2018, vo. 60, no. 3, pp. 210–219.CrossRefGoogle Scholar
  36. 36.
    N. D. Tolstykh, D. A. Orsoev, A. P. Krivenko, and A. E. Izokh, Noble-Metal Mineralization in the Layered Ultramafic–Mafic Plutons of the Southern Siberian Platform (Parallel, Novosibirsk, 2008) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Ariskin
    • 1
    • 2
  • G. S. Nikolaev
    • 2
  • L. V. Danyushevsky
    • 3
  • M. Fiorentini
    • 4
  • E. V. Kislov
    • 5
  • I. V. Pshenitsyn
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia
  3. 3.School of Physical Sciences and CODES, University of TasmaniaHobartAustralia
  4. 4.Centre for Exploration Targeting, School of Earth and Environment, ARC Centre of Excellence for Core to Crust Fluid Systems, The University of Western AustraliaPerthAustralia
  5. 5.Geological Institute, Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations