Geochemistry International

, Volume 56, Issue 10, pp 982–991 | Cite as

Evolutionary Processes in Anthropogenic Biogeochemical Provinces

  • T. I. MoiseenkoEmail author


The role of anthropogenic biogeochemical provinces in modern evolutionary transformations of the organic world is discussed in light of A.P. Vinogradov’s theory. The existence of anthropogenically impacted microevolution follows from numerous facts of changes in biological species at contaminated habitats. The impacts of two key factors on the genetic pool of a population are discussed: the accumulation of recessive mutations and the systematic selection of tolerant genotypes. The tolerance of organisms is demonstrated to be of polygenetic nature, and hence, selection can proceed in a population simultaneously at various loci and alleles. The selection of a resistant genotype weakens the adaptability of the population to other extremal factors of the environment. External factors and the structure of a population control the rate and avenues of the evolutionary transformations.


anthropogenic biogeochemical provinces influence factors evolutionary processes mutations tolerance selection population adaptation 



This study was conducted under a government-financed project and was financially supported by Grant 1.17 from the Presidium of the Russian Academy of Sciences.


  1. 1.
    Yu. P. Altukhov, “Dynamics of genetic pool during anthropogenic impact,” Vestn. VOGiS 8 (2), 40–59 (2004).Google Scholar
  2. 2.
    Yu. P. Altukhov, Genetic Processes in Populations (IKTsAkademkniga, Moscow, 2003) [in Russian].Google Scholar
  3. 3.
    Arctic Pollution Issues: a State of the Arctic Environment Report (AMAP Publication, Oslo, 1997).Google Scholar
  4. 4.
    J. W. Bickham, S. Sandhu, and P. D. Heber, “Effect of chemical contaminants on genetic diversity in natural population: implication for biomonitoring and ecotoxicology,” Mutat. Res. 463, 33–51 (2000).Google Scholar
  5. 5.
    M. Begon, J. L. Harper, and C. R. Townsend, Ecology: from Individuals to Ecosystems, 4th Ed., (Wiley–Blackwell, 2005).Google Scholar
  6. 6.
    V. S. Bezel, Ecological toxicology: Popular and Biocenotical Aspects (Goshchitskii, Yekaterinburg, 2006) [in Russian].Google Scholar
  7. 7.
    V. N. Bol’shakov and B. S. Kubanntsev, “Anthropogenic factors in the microevolution of animals,” in Development of the Academician S. S. Shvarts Ideas in the Modern Ecology (Nauka, Moscow, 1991), pp. 41–76 [in Russian].Google Scholar
  8. 8.
    V. N. Bol’shakov and T. I. Moiseenko, “Anthropogenic evolution of animals: facts and their interpretation,” Rus. J. Ecology 40 (5), 305–313 (2009).CrossRefGoogle Scholar
  9. 9.
    L. P. Braginsky, F. Ya. Komarovsky, and F. I. Merezhko, Persistent Pesticides in the Fresh Water Ecology (Naukova Dumka, Kiev, 1979) [in Russian].Google Scholar
  10. 10.
    M. P. Cajaraville, L. Houser, and G. Carvalho, “Genetic damage and the molecular/cellular response to pollution,” Effects of Pollution on Fish. Molecular Effect and Population Responses, Ed. by A. J. Lawrence and K. L. Hemingway (Blackwell Science, New York, 2003), pp. 14–82.Google Scholar
  11. 11.
    R. K. Chesser and D. W. Sugg, “Toxicant as selective agents in population and community dynamics, Ecotoxicology: a Hierarchical Treatment, Ed. by M. C. Newman and Ch. H. Jagoe, (Levis Publishers, New York, 1996), pp. 293–317.Google Scholar
  12. 12.
    M. L. A. Cuvinaralar and E. V. Aralar, “Resistance to heavy-metals mixture in Oreochromis niloticus progenies from parents chronically exposes,” Chemosphere 30 (5), 953–963 (1995).CrossRefGoogle Scholar
  13. 13.
    M. N. Depledge, “Genetic ecotoxicology: an overview,” J. Experim. Marine Biol. Ecol. 200 (1–2), 57–66 (1996).CrossRefGoogle Scholar
  14. 14.
    V. V. Ermakov, “Biogeochemical provinces: concept, classification, and ecological assessment, Main Directions in Geochemistry. On 100 th Anniversary of the Academician A.P. Vinogradov (Nauka, Moscow, 1995), pp. 183–196 [in Russian].Google Scholar
  15. 15.
    V. E. Forbes and T. L. Forbes, Ecotoxicology in Theory and Practice (Chapman & Hall, London, 1994).Google Scholar
  16. 16.
    N. A. Gashkina, “Essential elements in the organs and tissues of fish depending on the freshwater toxicity and physiological state,” Geochem. Int. 55 (10), 927–934 (2017).CrossRefGoogle Scholar
  17. 17.
    E. Gautheier, I. Fortier, and F. Courchesne, “Aluminium form in drinking water and risk of Alzheimer’s disease,” Environ. Res. 84, 234–246 (2000).CrossRefGoogle Scholar
  18. 18.
    A. M. Gilyarov, “Development of evolution approach as explanation of beginning in the ecology,” Zh. Obshch. Biol. 64 (1), 3–2 (2003).Google Scholar
  19. 19.
    L. Hauser, K. L. Hemingway, J. Wedderbern, and A. J. Lawrence, Molecular/cellular processes and population genetics of species: molecular effect and population response,” Effects of Pollution on Fish, Ed. by A. J. Lawrence and K. L. Hemingway (Blackwell Science, New York, 2003), pp. 256–288.CrossRefGoogle Scholar
  20. 20.
    Yu. G. Izyumov, A. N. Kas’yanov, and M. G. Talikina, “Variability of the Number of Meltings and anomalies of axial skeleton of experimental roach fingerling Rutilus rutilus (L.) after impact of toxicans on parental spermium,” Vopr. Ikhtiol. 42 (1), 109–113 (2002).Google Scholar
  21. 21.
    Yu. G. Izyumov, M. G. Talikina, and Yu V. Chebotarev, “Amount of micronuclei in red cells of peripheral blood of roach Rutilus rutilus (L.) and bream Abramis brama (L.) of the Ruybinsk and Gor’kovskii water reservoir,” Biol. Vnutr. Vod, 1, 98–101 (2003).Google Scholar
  22. 22.
    P. L. Klerks, “Adaptation to metals in animals,” Heavy Metals Tolerance: Evolutinary Aspects, Ed. by A. J. Show (CRC Press, Boca Raton, 1990), pp. 311–321.Google Scholar
  23. 23.
    E. I. Kolchinskii, Evolution of Biosphere (Nauka, Leningrad, 1990) [in Russian].Google Scholar
  24. 24.
    V. V. Kovalsky, “Origin and evolution of biosphere,” Usp. Sovrement. Biol. 55 (1), 45–67 (1963).Google Scholar
  25. 25.
    H. Ledford, “Don’t breath the air: it might meddle with your reproduction,” Nature 439, 254–260 (2008).Google Scholar
  26. 26.
    T. I. Moiseenko, Water Ecotoxicology: Fundamental and Applied Aspects (Nauka, Moscow, 2009) [in Russian]Google Scholar
  27. 27.
    T. I. Moiseenko, “Effect of toxic pollution on fish populations and mechanisms for maintaining population size,” Russ. J. Ecol. 41 (3), 235–241 (2010).CrossRefGoogle Scholar
  28. 28.
    T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).CrossRefGoogle Scholar
  29. 29.
    T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, Water Acidification: Sensitivity and Critical Loads (URSS, Moscow, 2017) [in Russian].Google Scholar
  30. 30.
    M. Mulvey and S. A. Diamond, “Genetic factors and tolerance aacquisition in ppopulation exposed to metals and metalloids,” Metal Ecotox. Ed. by M. C. Newman and A. W. McIntosh (Lewis Publisher, New York, 1991), pp. 301–321.Google Scholar
  31. 31.
    M. C. Newman, Quantitative Methods in Aquatic Ecotoxicology (Lewis Publishers, New York, 1995).Google Scholar
  32. 32.
    M. C. Newman and Ch. H. Jagoe, Ecotoxicology: a Hierarchical Trieatment (Levis publishers, New York, 1996).Google Scholar
  33. 33.
    A. I. Perelman, and N. S. Kasimov, Landscape Geochemistry (Astreya-2000, Moscow, 1999) [in Russian].Google Scholar
  34. 34.
    Yu. E. Saet, B. A. Revich, and E. P. Yanin, Environmental Geochemistry (Nedra, Moscow, 1990) [in Russian].Google Scholar
  35. 35.
    A. S. Severtsev, “Intraspecies diversity as the reason of evolution stability,” Russk. Ornitolog. Zh. 23 (1072), 3659–3673 (2014).Google Scholar
  36. 36.
    E. A. Severtseva, A. A. Kormilitsyn, and A. S. Severtsov, “Influence of anthropogenic factors on the reproduction of brown (Rana temporaria) and moor (Rana arvalis) frogs,” Zool. Zh. 94 (2), 192–195 (2015).Google Scholar
  37. 37.
    L. R. Shugart and C. W. Theodorakis, “Environment gonadotoxicity: probing the underlying mechanism,” Environ. Health Persp. 102, 13–18 (1994).CrossRefGoogle Scholar
  38. 38.
    S. S. Shvarts, Ecological Regularities of Evolution (Nauka, Moscow, 1980) [in Russian].Google Scholar
  39. 39.
    A. V. Sokolov, “Mechanisms of regulation of the speed of evolution: The population level,” Biophysics 61 (3), 513–520 (2016).CrossRefGoogle Scholar
  40. 40.
    J. L. Staton, N. V. Schizas, and D. C. Chandler, “Ecotoxicology and population genetic structure: the emergence of ‘philogeographic and evolutionary ecotoxicology,” Ecotox. 6, 217–222 (2001).CrossRefGoogle Scholar
  41. 41.
    A. P. Vinogradov, “Biogeochemical provinces and endemia,” Dokl. Akad. Nauk SSSR 18 (4–5), 283–286 (1938).Google Scholar
  42. 42.
    A. P. Vinogradov, “Biogeochemical provinces and their role in the organic evolution,” Geokhimiya, No. 3, 199–242 (1963).Google Scholar
  43. 43.
    C. H. Walker, S. P. Hopkin, R. M. Sibly, and D. B. Peakall, Principles of Ecotoxicology, 2nd Ed. (Taylor&Francis, London, 2001) 307 p.Google Scholar
  44. 44.
    J. S. Wies, N. Mugue, and P. Wies, “Mercury tolerance, population effects, and population genetic in the mummichog,” Fundulus-eteroclitus. Genetic and Ecotoxicology (Ed. Forbes V.E.), London: Taylor&Frances, 1999), pp. 31–54.Google Scholar
  45. 45.
    M. Xu, R. Yan, C. Zheng, Y. Qiao, and J. Han, “Status of trace element emission in a coal combustion process: a review,” Fuel Process. Technol. 85, 215–237 (2003).CrossRefGoogle Scholar
  46. 46.
    X. J. Yu, M. J. Yang, B. Zhou, G. Z. Wang, Y. C. Huang, L. C. Wu, X. Cheng, Z. S. Wen, J. Y. Huang, Y. D. Zhang, X. H. Gao, G. F. Li, S. W. He, Z. H. Gu, L. Ma, C. M. Pan, P. Wang, H. B. Chen, Z. P. Hong, and X. L. Wang, “Characterization of somatic mutations in air pollution-related lung cancer,” BioMedicine 2 (6) 583–90 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia

Personalised recommendations