Geochemistry International

, Volume 56, Issue 10, pp 1016–1027 | Cite as

Characteristics of Bioaccumulation of Elements in Organs and Tissues of Fish during Stabilization of Anthropogenic Load: Evidence from Whitefish Coregonus lavaretus L. of Subractic Lake Imandra

  • N. A. GashkinaEmail author

Abstract—This paper considers the bioaccumulation of elements in organs and tissues of whitefish from the Lake Imandra reaches, which were subjected to different anthropogenic impacts, during stabilization of anthropogenic load. It is shown that the element accumulation in the organs and tissues of the whitefish is mainly controlled by the individual resistance to the higher concentrations of toxic elements and physiological state rather than by their concentrations in water. The models of element redistribution in liver and kidney depending on the physiological state of the fish are constructed. Changes in iron and zinc metabolism at different concentrations of hemoglobin in blood and stages of fish disease are shown.


fish bioaccumulation change of anthropogenic load physiological state element redistribution in organism iron and zinc metabolism 



This work was supported by the Russian Science Foundation (project no. 18-17-00184).


  1. 1.
    J. Blanchard and M. Grosell, “Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities?” Aquat. Toxicol. 80, 131–139 (2006).CrossRefGoogle Scholar
  2. 2.
    V. N. Bol’shakov and T. I. Moiseenko, “Antropogenic evolution of animals: facts and their interpretation,” Russ. J. Ecol. 40 (5), 305–313 (2009).CrossRefGoogle Scholar
  3. 3.
    V. M. Bykova and Z. I. Belova, A Reference Book on Cooling Treatment of Fish (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  4. 4.
    T. Crommentuijn, D. Sijm, J. Bruijn, et al., ”Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations,” J. Environ. Management 60, 121–143 (2000).CrossRefGoogle Scholar
  5. 5.
    A. O. F. da Silvaa, and C. B. R. Martineza, “Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: enzymes activity and plasma ions,” Aquat. Toxicol. 156, 161–168 (2014).CrossRefGoogle Scholar
  6. 6.
    S. I. Dolomatov and V. A. Zhukov, Actual Problems of Study of Exchange Processes of Fish (Radom University, Radom, 2011) [in Russian].Google Scholar
  7. 7.
    R. Eid, N. T. T. Arab, and M. T. Greenwood, “Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms,” Biochim. Biophys. Acta 1864, 399–430 (2017).CrossRefGoogle Scholar
  8. 8.
    Fish Physiology: Homeostasis and Toxicology of Essential Metals, Ed. by C. M. Wood, A. P. Farrell, and C. J.Brauner, (Academic Press, San Diego, 2012a), vol. 31A.Google Scholar
  9. 9.
    Fish Physiology: Homeostasis and Toxicology of Non-Essential Metals, Ed. by C. M. Wood, A. P. Farrell, and C. J. Brauner (Academic Press, San Diego, 2012b), Vol. 31B.Google Scholar
  10. 10.
    N. A. Gashkina, “Essential elements in the organs and tissues of fish depending on the freshwater toxicity and physiological state,” Geochem. Int. 55(10), 927–934 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Grosell, and C. M. Wood, “Copper uptake across rainbow trout gill: mechanisms of apical entry,” J. Exp. Biol. 205, 1179–1188 (2002).Google Scholar
  12. 12.
    A. A. Ivanov, Fish Physiology (Mir, Moscow, 2003) [in Russian].Google Scholar
  13. 13.
    J. M. Jacobs, P. R. Sinclair, J. F. Sinclair, N.Gorman, H. S. Walton, S. G. Wood, and C. Nichols, “Formation of zinc protoporphyrin in cultured hepatocytes: effects of ferrochelatase inhibition, iron chelation or lead,” Toxicology 125, 95–105 (1998).CrossRefGoogle Scholar
  14. 14.
    J. Klinck, M. Dunbar, S. Brown, J. Nichols, A. Winter, C. Hughes, and R. C. Playle, “Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout. (Oncorhynchus mykiss),” Aquat. Toxicol. 72, 161–175 (2005).CrossRefGoogle Scholar
  15. 15.
    O. N. Krylov, A Textbook on Prevention and Diagnostics of Fish Poisoning by Toxic Matters (Moscow, 1980) [in Russian].Google Scholar
  16. 16.
    V. I. Lushchak, “Contaminant-induced oxidative stress in fish: a mechanistic approach,” Fish Physiol. Biochem. 42, 711–747 (2016)CrossRefGoogle Scholar
  17. 17.
    J. C. McGeer, S. Nadella, D. H. Alsop, L. Hollis, L. N. Taylor, D. G. McDonald, and C. M. Wood, “Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss),” Aquat. Toxicol. 84, 190–197 (2007).CrossRefGoogle Scholar
  18. 18.
    T. I. Moiseenko, “Hematological indicators of fish in assessment of their toxicosis,” Vopr. Ikhtiol., No. 2, 371–380 (1998).Google Scholar
  19. 19.
    T. I. Moiseenko and L. P. Kudryavtseva, “Trace metals accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola Region, Russia,” Environ. Pollut. 114 (2), 285–297 (2001).CrossRefGoogle Scholar
  20. 20.
    T. I. Moiseenko, V. A. Dauvalter, A. A. Lukin, L. P. Kudryavtseva, B. P. Il’yashchuk, S. S. Sandimirova, L. Ya. Kagan, O. I. Vandysh, A. N. Sharov, Yu. N. Sharova, and I. N. Koroleva, Antropogenic Modifications of the Imandra Lake Ecosystems (Nauka, Moscow, 2002) [in Russian].Google Scholar
  21. 21.
    T. I. Moiseenko, A. A.Voinov, V. V. Megorsky, N. A. Gashkina, L. P. Kudriavtseva, O. I. Vandish, A. N. Sharov, Y. N. Sharova, and I. N. Koroleva, “Ecosystem and human health assessment to define environmental management strategies: the case of long-term human impacts on an Arctic lake,” Sci. Total Environ. 369, 1–20 (2006).CrossRefGoogle Scholar
  22. 22.
    T. I. Moiseenko, N. A. Gashkina, A. N. Sharov, O. I. Vandysh, and L. P. Kudryavtseva, “Anthropogenic transformations of the Arctic ecosystem of Lake Imandra: tendencies for recovery after long period of pollution,” Water Res., 36 (3), 296–309 (2009).CrossRefGoogle Scholar
  23. 23.
    T. I. Moiseenko, A. N. Sharov, O. I. Vandish, L. P. Kudryavtseva, N. A. Gashkina, and C. Rose “Long-term modification of Arctic lake ecosystem: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia),” Limnologica 39, 1–13 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Niyogi, R. Kent, and C. M. Wood, “Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): a biotic ligand model (BLM) approach,” Comp. Biochem. Physiol. C 148, 305–314 (2008).Google Scholar
  25. 25.
    I. A. Novikova and S. A. Khoduleva, Clinical and Laboratory Hematology (Vysshaya Shkola, Minsk, 2013) [in Russian].Google Scholar
  26. 26.
    I. F. Pravdin, A Textbook on Fish Study (Pishchevaya Promyshlennost, Moscow, 1966) [in Russian].Google Scholar
  27. 27.
    G. G. Pyle, S. M. Swanson, and D. M. Lehmkuhl “The influence of water hardness, pH, and suspended solids on nickel toxicity to larval fathead minnows. (Pimephales promelas),” Wat. Air Soil Pollut. 133, 215–226 (2002).CrossRefGoogle Scholar
  28. 28.
    P. Sharp, “The molecular basis of copper and iron interactions,” Proc. Nutr. Soc. 63, 563–569 (2004).CrossRefGoogle Scholar
  29. 29.
    V. M. Sheibak, “Biological significance and regulation of zinc homeostasis of mammals,” Probl. Zdorov’ya Ekol. 50 (4), 11–16 (2016.Google Scholar
  30. 30.
    I. Yu Torshin and O. A. Gromova, Expert Analysis of Data on Molecular Pharmacology (MTsNMO, Moscow, 2012) [in Russian].Google Scholar
  31. 31.
    M. Wang, Y. Wang, L. Zhang, J. Wang, H. Hong, and D. Wang, “Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma),” Aquat. Toxicol. 130–131, 123–131 (2013).CrossRefGoogle Scholar
  32. 32.
    Water Quality Standards for Fishery Objects, Including Norms of Maximum Permissible Concentrations of Toxic matters in Fishery Basins (VNIRO, Moscow, 2011) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia

Personalised recommendations