Geochemistry International

, Volume 56, Issue 10, pp 992–1002 | Cite as

Ecological–Geochemical Studies of Technogenic Soils in the Flood Plain Landscapes of the Seversky Donets, Lower Don Basin

  • T. V. BauerEmail author
  • V. G. LinnikEmail author
  • T. M. Minkina
  • S. S. Mandzhieva
  • D. G. Nevidomskaya

Abstract—The paper presents the ecological-geochemical studies of soils confined to the impact zone of industrial waste water storage and sludge reservoirs of former Lake Atamanskoe in the Seversky Donets River flood plain. These soils show hundreds time increase of Zn, tens times increase of Cu and Pb, and few times increase of Cu, Ni, and Cr as compared to the average lithosphere values. The coefficients of technogenic concentration of elements (Kc) and the total indicator of soil pollution (Zc) are calculated. In terms of Zc, the studied soils are ascribed to the extremely dangerous category of pollution. Using predominant pollutant metal, Zn, as an example, it is shown that an increase in the metal pollution level of soil leads to a change of interaction mechanism with organic matter and Fe oxides, and, subsequently, to the prevalence of Zn forms loosely bound with the given components. The metal is mainly confined to the silicate-related fraction, which is confirmed by the mineralogical study and chemical fractionation. Owing to the limitation period and long duration of pollution, the mineral phase of technogenically polluted soils revealed the high degree of transformation changes, which led to the formation of authigenic minerals, mainly sulfates.


flood plain landscape heavy metals (zinc) Spolic Technosols chemical pollution ecological-geochemical assessment mineralogical analysis fractionation 



The study was supported by the Russian Foundation for Basic Research (project no. 17-35-50106 “mol_nr”) and Ministry of Education and Science of the Russian Federation (project no. 5.948.2017/PCh).


  1. 1.
    J. Albertsson, S. C. Abrahams, and A. Kvick, “Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO,” Acta Cryst. 45, 34–40 (1989).CrossRefGoogle Scholar
  2. 2.
    V. A. Alekseenko, and L. P. Alekseenko, Geochemical Barriers. A Textbook (Logos, Moscow, 2003) [in Russian].Google Scholar
  3. 3.
    J. M. Alvarez, L. M. Lopez-Valdivia, J. Novillo, A. Obrador, and M. I. Rico, “Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils,” Geoderma (132), 450–463 (2006).Google Scholar
  4. 4.
    D. Arenas-Lago, M. L. Andrade, M. Lago-Vila, A. Rodríguez-Seijo, and F. A. Vega, “Sequential extraction of heavy metals in soils from a copper mine: Distribution in geochemical fractions,” Geoderma 230–231, 108–118 (2014).CrossRefGoogle Scholar
  5. 5.
    M. A. Glazovskaya, Geochemistry of Natural and Anthropogenic Landscapes of the USSR (Vysshaya Shkola, Moscow, 1988) [in Russian].Google Scholar
  6. 6.
    M. A. Glazovskaya, “Problems and methods of assessment of the ecogeochemical resilience of soils and the soil cover towards technogenic impacts,” Euras. Soil Sci., 32 (1), 99–108 (1999).Google Scholar
  7. 7.
    GN (2006) Maximum Allowable Concentration (MAC) of Chemical Matters in Soil (Fed. Ts. Gigieny Epidemiolog. Rospotrebnadzora, Moscow, 2006) [in Russian].Google Scholar
  8. 8.
    GOST Nature Protection. Methods of Sampling and Sample Preparation for Chemical, Bacteriological, and Helmintologic Analysis (Standardinform, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    O. Jacquat, A. Voegelin, and R. Kretzschmar, “Soil properties controlling Zn speciation and fractionation in contaminated soils,” Geochim. Cosmochim. Acta 73, 5256–5272 (2009).CrossRefGoogle Scholar
  10. 10.
    X. Jiang and C. Wang, “Zinc distribution and zinc-binding forms in Phragmitesaustralis under zinc pollution,” J. Plant Physiol. 165, 697–704 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Kabata-Pendias, Trace Elements in Soils and Plants, 4th Ed. (CRC Press, Boca Raton, 2010).CrossRefGoogle Scholar
  12. 12.
    J. Kierczak, C. Neel, U. Aleksander-Kwaterczak, E. Helios-Rybicka, H. Bril, and J. Puziewicz, “Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach,” Chemosphere 73, 776–784 (2008).CrossRefGoogle Scholar
  13. 13.
    M. J. Kwon, M. I. Boyanov, J. S. Yang, S. Lee, Y. H. Hwang, J. Y. Lee, B. Mishra, and K. M. Kemner, “Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy,” Environ. Pollut. 226, 346–355 (2017).CrossRefGoogle Scholar
  14. 14.
    D. V. Ladonin. “Heavy metal compounds in soils: problems and methods of study,” Euras. Soil Sci. 35 (6), 605–613 (2002).Google Scholar
  15. 15.
    H. Li and H. Ji, “Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China,” J. Geochem. Explor. 183, 22–32 (2017).CrossRefGoogle Scholar
  16. 16.
    Q. Z. Li, F. Wu, B. Chu, N. Zhang, S. S. Cai, and J. H. Fang, “Heavy metals in coastal wetland sediments of the Pearl River Estuary, China,” Environ. Pollut. 149, 158–164 (2007).CrossRefGoogle Scholar
  17. 17.
    G. N. Liu, L. Tao, X. H. Liu, J. Hou, A. J. Wang, and R. P. Li, “Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China,” J. Geochem. Explor. 132, 156–163 (2013).CrossRefGoogle Scholar
  18. 18.
    G. A. Mashkovtsev, “Modern state of mineral-raw base of Russian metallurgy,” Mineral. Resurs. Ross., Ekonomika Upravl., No. 5, 16–25 (2007).Google Scholar
  19. 19.
    Methodical Recommendations for Assesment of Soil Pollution by Chemical Matters (Min. Zdravookhran. SSSR, Moscow 1987) [in Russian].Google Scholar
  20. 20.
    Methodical Recommendations no. 158. Scientific Council on Methods of Mineralogical Studies (SCMMS) of the Federal Scientific-Methodical Center of Laboratory Studies and Certification of Mineral Raw Material (VIMS, Moscow, 2008) [in Russian].Google Scholar
  21. 21.
    T. M. Minkina, A. V. Soldatov, D. G. Nevidomskaya, G. V. Motuzova, Yu. S. Podkovyrina, and S. S. Mandzhieva, “New approaches to studying heavy metals in soils by X-Ray absorption spectroscopy (XANES) and extractive fractionation,” Geochem. Int. 54 (2), 197–204 (2016). doi 10.1134/S001670291512006XCrossRefGoogle Scholar
  22. 22.
    T. M. Minkina, G. V. Motuzova, O. G. Nazarenko, V. S. Kryshchenko, and S. S. Mandzhieva, “Combined approach for fractioning metal compounds in soils,” Euras. Soil Sci. 41 (11), 1171–1179 (2008).Google Scholar
  23. 23.
    T. M. Minkina, G. V. Motuzova, S. S. Mandzhieva, O. G. Nazarenko, M. V. Burachevskaya, and E. M. Antonenko, “Fractional and group composition of the Mn, Cr, Ni, and Cd compounds in the soils of technogenic landscapes in the impact zone of the Novocherkassk Power Station,” Euras. Soil Sci. 46 (4), 375–385 (2013).Google Scholar
  24. 24.
    T. M. Minkina, A. V. Soldatov, G. V. Motuzova, Yu. S. Podkovyrina, and D. G. Nevidomskaya, “Speciation of copper and zinc compounds in artificially contaminated chernozem by X-ray absorption spectroscopy and extractive fractionation,” J. Geochem. Explor. 144, 306–311 (2014).CrossRefGoogle Scholar
  25. 25.
    T. M. Minkina, D. G. Nevidomskaya, T. N. Pol’shina, Yu. A. Fedorov, S. S. Mandzhieva, V. A. Chaplygin, T. V. Bauer, and M. V. Burachevskaya, “Heavy metals in the soil-plant system of the Don River estuarine region and the Taganrog Bay coast,” J. Soils Sediments 17, 1474–1491 (2017).CrossRefGoogle Scholar
  26. 26.
    T. M. Minkina, V. G. Linnik, D. G. Nevidomskaya, T. V. Bauer, S. S. Mandzhieva, and V. Khoroshavin, “Forms of Cu(II), Zn(II), and Pb(II) compounds in technogenically transformed soils adjacent to the Karabashmed copper smelter,” J. Soils Sediments 18 (6), 2217–2228 (2018) doi 10.1007/s11368-017-1708-2CrossRefGoogle Scholar
  27. 27.
    J. Myers and K. Thorbjornsen, “Identifying metals contamination in soil: a geochemical approach,” Soil Sediment Cont. 13, 1–16 (2004).CrossRefGoogle Scholar
  28. 28.
    D. G. Nevidomskaya, T. M. Minkina, A. V. Soldatov, V. A. Shuvaeva, Y. V. Zubavichus, and Yu. S. Podkovyrina, “Comprehensive study of Pb(II) speciation in soil by X-ray absorption spectroscopy (XANES and EXAFS) and sequential fractionation,” J. Soils Sediments 16 (4), 1183–1192 (2016).CrossRefGoogle Scholar
  29. 29.
    E. M. Nikiforova and N. E. Kosheleva, “Fractional composition of lead compounds in soils of Moscow and Moscow Region,” Euras. Soil Sci. 42 (8), 874–884 (2009).Google Scholar
  30. 30.
    M. S. Panin and T. I. Siromlya, “Adsorption of copper by soils of the Irtysh River region, Semipalatinsk Oblast,” Euras. Soil Sci. 38 (4), 364–373 (2005).Google Scholar
  31. 31.
    A. I. Perelman, and N. S. Kasimov, Landscape Geochemistry (Astreya-2000, Moscow, 2000) [in Russian.Google Scholar
  32. 32.
    D. L. Pinskii and T. M. Minkina, “Regularities of Cu, Pb and Zn adsorption by chernozems of the South of Russia,” Euras. J. Soil Sci., No. 2, 59–68 (2013).Google Scholar
  33. 33.
    I. O. Plekhanova, and V. A. Bambusheva, “Extraction methods for studying the fractional composition of heavy metals in soils and their comparative assessment,” Euras. Soil Sci. 43 (9), 1004–1010 (2010).Google Scholar
  34. 34.
    V. V. Privalenko, V. T. Mazurenko, V. I. Panaskov, V. M. Moshkin, N. V. Mukhin, and B. K. Senin, Ecological Problems of the City of Kamensk-Shakhtinskii (Tsvetnaya Pechat, Rostov on Don, 2000) [in Russian].Google Scholar
  35. 35.
    Yu. E. Saet, B. A Revich, E. P. Yanin, et al., Environmental Geochemistry (Nedra, Moscow, 1990) [in Russian].Google Scholar
  36. 36.
    A. C. Scheinost, R. S. Kretzchmar, and S. Pfister, “Combining selective sequential extractions, X-ray adsorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil,” Environ. Sci. Technol. 36, 5021–5028 (2002).CrossRefGoogle Scholar
  37. 37.
    A. C. Scheinost, R. S. Kretzchmar, S. Pfister “Combining selective sequential extractions, X-ray adsorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil,” Environ. Sci. Technol. 36, 5021–5028 (2002).CrossRefGoogle Scholar
  38. 38.
    M. Sh. Shaimukhametov, “On determination technique of absorbed Ca and Mg in chernozem soils, Pochvovedenie, No. 12, 105–111 (1993).Google Scholar
  39. 39.
    A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Anal. Chem. 51 (7), 844–850 (1979).CrossRefGoogle Scholar
  40. 40.
    A. F. Vadyunina, and Z. A. Korchagina, Methods of Study of Physical Properties of Soils and Grounds (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  41. 41.
    A. P. Vinogradov, Geochemistry of Rare and Trace Elements in Soils (AN SSSR, Moscow, 1957) [in Russian].Google Scholar
  42. 42.
    A. Voegelin, G. Tokpa, O. Jacquat, K. Barmettler, and R. Kretzschmar, “Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content,” J. Environ. Qual. 37, 1190–1200 (2008).CrossRefGoogle Scholar
  43. 43.
    L. A. Vorob’eva, Theory and Practice of Chemical Analysis of Soils (GEOS, Moscow, 2006) [in Russian].Google Scholar
  44. 44.
    W. Wisawapipat, Y. Janlaksanaa, and I. Christl, “Zinc solubility in tropical paddy soils: a multi-chemical extraction technique study,” Geoderma 301, 1–10 (2017).CrossRefGoogle Scholar
  45. 45.
    S. D. Young, H. Zhang, A. M. Tye, A. Maxted, C. Thums, and I. Thornton, “Characterizing the availability of metals in contaminated soils. I. The solid phase: sequential extraction and isotopic dilution,” Soil Use Manage 21, 450–458 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Geographical Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations