Advertisement

Geochemistry International

, Volume 56, Issue 10, pp 1003–1015 | Cite as

Historical Variation in the Distribution of Trace and Major Elements in a Poor Fen of Fenghuang Mountain, NE China

  • K. Bao
  • G. Wang
  • S. Pratte
  • L. Mackenzie
  • A.-M. Klamt
Article
  • 32 Downloads

Abstract

Ombrotrophic bogs are widely used to reconstruct the history of atmospheric metal deposition. Minerotrophic fens are potential archives as well but not much attention has been paid to them. This study examined the accumulation of major and trace elements in a poor fen of Fenghuang Mountain, NE China. Peat cores were dated by 210Pb and 137Cs techniques and elemental analyses were conducted after a two-step sequential digestion with HCl. Results suggest no significant pollution for other trace metals but Pb in Fenghuang Mountain area. Atmospheric soil dust flux (ASD) was calculated from the Ti content in the peat, and its decreasing trend over the last 60 years agrees with the East Asian winter monsoon (EAWM) shift, which suggests that ASD could be a potential climatic proxy for the EAWM variability in the region.

Keywords:

minerotrophic peatland accumulation rate heavy metal atmospheric soil dust 210Pb and 137Cs 

Notes

ACKNOWLEDGMENTS

We are grateful to the National Key R&D Program of China (no. 2016YFA0602301), the NSFC-Belmont Forum Joint Research Project (no. 4166114404), the NSFC-CNRS Joint Research Project (no. 41611130163), Beijing Natural Science Foundation (no. 9164022) and NIGLAS Cross-functional Innovation Teams (no. NIGLAS2016TD01) for financial support.

REFERENCES

  1. 1.
    A. A. Ali, B. Ghaleb, M. Garneau, H. Asnong, and J. Loisel, “Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques,” Appl. Radiat. Isotopes 66, 1350–1358 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Allan, G. Le Roux, F. De Vleeschouwer, R. Bindler, M. Blaauw, N.Piotrowska, J. Sikorski, and N. Fagel, “High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrotrophic peat cores in Hautes-Fagnes, Belgium,” Environ. Pollut. 178, 381–394 (2013).CrossRefGoogle Scholar
  3. 3.
    P. G. Appleby, “Three decades of dating recent sediments by fallout radionuclides: a review,” Holocene 18, 83–93 (2008).CrossRefGoogle Scholar
  4. 4.
    S. Azoury, J. Tronczyński, J.F. Chiffoleau, D. Cossa, K. Nakhle, S. Schmidt, and G. Khalaf, “Historical records of mercury, lead, and polycyclic aromatic hydrocarbons depositions in a dated sediment core from the eastern Mediterranean,” Environ. Sci. Technol. 47, 7101–7109 (2013).CrossRefGoogle Scholar
  5. 5.
    K. Bao, W. Xia, X. Lu, and G. Wang, “Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, northeast China, from 210Pb and 137Cs dating,” J. Environ. Radioact. 101, 773–779 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Bao, W. Xing, X. Yu, H. Zhao, N. McLaughlin, X. Lu, and G. Wang, “Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, northeast China,” Sci. Total Environ. 431, 33–45 (2012).CrossRefGoogle Scholar
  7. 7.
    K. Bao, J. Shen, G. Wang, and G. Le Roux, “Atmospheric deposition history of trace metals and metalloids for the last 200 years recorded by three peat cores in Great Hinggan Mountain, northeast China,” Atmosphere 6, 380–409 (2015a).CrossRefGoogle Scholar
  8. 8.
    K. Bao, G. Wang, W. Xing, and J. Shen, “Accumulation of organic carbon over the past 200 years in Alpine peatlands, northeast China,” Environ. Earth Sci. 73, 7489–7503 (2015b).CrossRefGoogle Scholar
  9. 9.
    K. Bao, J. Shen, G. Wang, and S. Tserenpil, “Anthropogenic, detritic and atmospheric soil-derived sources of lead in an alpine poor fen in northeast China,” J. Mt. Sci. 13, 255–264 (2016).CrossRefGoogle Scholar
  10. 10.
    D. Castro, M. Souto, E. Garcia-Rodeja, X. Pontevedra-Pombal, and M. Fraga, “Climate change records between the mid- and late holocene in a peat bog from Serra do Xistral (SW Europe) using plant macrofossils and peat humification analyses,” Palaeogeogr., Palaeoclimat., Paleoecol., 420, 82–95 (2015).CrossRefGoogle Scholar
  11. 11.
    J. M. Cloy, J. G. Farmer, M. C. Graham, and A. B. MacKenzie, “Retention of As and Sb in ombrotrophic peat bogs: records of As, Sb, and Pb deposition at four Scottish sites,” Environ. Sci. Technol. 43, 1756–1762 (2009).CrossRefGoogle Scholar
  12. 12.
    F. De Vleeschouwer, N. Fagel, A. Cheburkin, A. Pazdur, J. Sikorski, N. Mattielli, V. Renson, B. Fialkiewicz, N. Piotrowska, and G. Le Roux, “Anthropogenic impacts in North Poland over the last 1300 years – A record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog,” Sci. Total Environ. 407, 5674–5684 (1999).CrossRefGoogle Scholar
  13. 13.
    F. De Vleeschouwer, H. Vanneste, D. Mauquoy, N. Piotrowska, F. Torrejón, T. Roland, A. Stein, and G. Le Roux, “Emissions from pre-Hispanic metallurgy in the South American atmosphere,” PloS one 9, e111315 (2014).CrossRefGoogle Scholar
  14. 14.
    L. M. Dupont, “Temperature and rainfall variation in the Holocene based on comparative palaeoecology and isotope geology of a hummock and a hollow (Bourtangerveen, The Netherlands),” Rev. Palaeobot. Palyno. 48, 71–88 (1986).CrossRefGoogle Scholar
  15. 15.
    M. Ferrat, D. Weiss, S. Dong, D.J. Large, B. Spiro, Y. Sun, and K. Gallagher, “Lead atmospheric deposition rates and isotopic trends in Asian dust during the last 9.5 kyr recorded in an ombrotrophic peat bog on the eastern Qinghai–Tibetan Plateau,” Geochim. Cosmochim. Acta 82, 4–22 (2012).CrossRefGoogle Scholar
  16. 16.
    C. Franzen, R. Kilian, and H. Biester, “Natural mercury enrichment in a minerogenic fen-evaluation of sources and processes,” J. Environ. Monitor. 6, 466–472 (2004).CrossRefGoogle Scholar
  17. 17.
    X. Gao, and C. T. A. Chen, “Heavy metal pollution status in surface sediments of the coastal Bohai Bay,” Water Res. 46, 1901–1911 (2012).CrossRefGoogle Scholar
  18. 18.
    J. R. Gallego, J. E. Ortiz, C. Sierra, T. Torres, and J. F. Lamas, “Multivariate study of trace element distribution in the geological record of Roñanzas peat bog (Asturias, N. Spain). paleoenvironmental evolution and human activities over the last 8000cal yr BP,” Sci. Total Environ. 454, 16–29 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Kumar, W. Abouchami, S. Galer, V. Garrison, E. Williams, and M. Andreae, “A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean,” Atmos. Environ. 82, 130–143 (2014).CrossRefGoogle Scholar
  20. 20.
    A. Kuttner, T. M. Mighall, F. De Vleeschouwer, D. Mauquoy, A. Martinez Cortizas, I. D. L. Foster, and E. Krupp, “A 3300-year atmospheric metal contamination record from Raeburn Flow raised bog, south west Scotland,” J. Archaeol. Sci. 44, 1–11 (2014).CrossRefGoogle Scholar
  21. 21.
    M.E. Kylander, R. Bindler, A.M. Cortizas, K. Gallagher, C.M. Mörth, and S. Rauch, “A novel geochemical approach to paleorecords of dust deposition and effective humidity: 8500 years of peat accumulation at Store Mosse (the “Great Bog”), Sweden,”Quatern. Sci. Rev. 69, 69–82 (2013).CrossRefGoogle Scholar
  22. 22.
    G. Le Roux, D. Aubert, P. Stille, M. Krachler, B. Kober, A. Cheburkin, G. Bonani, and W. Shotyk, “Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives,” Atmos. Environ. 39, 6790–6801 (2005).CrossRefGoogle Scholar
  23. 23.
    Y. Liu, L. Sun, X. Zhou, Y. Luo, W. Huang, C. Yang, Y. Wang, and T. Huang, “A 1400-year terrigenous dust record on a coral island in South China Sea,” Sci. Rept. 4, 4994 (2014).CrossRefGoogle Scholar
  24. 24.
    P. Madsen, “Peat bog records of atmospheric mercury deposition,” Nature 293, 127–130 (1981).CrossRefGoogle Scholar
  25. 25.
    A. Martinez Cortizas, L. Lopez-Merino, R. Bindler, T. Mighall, and M. Kylander, “Atmospheric Pb pollution in N Iberia during the late Iron Age/Roman times reconstructed using the high-resolution record of La Molina mire (Asturias, Spain),” J. Paleolimnol. 50, 71–86 (2013).CrossRefGoogle Scholar
  26. 26.
    A. Martinez Cortizas, X. Pontevedra-Pombal, E. Garcia-Rodeja, J.C. Novoa-Munoz, and W. Shotyk, “Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition,” Science 284, 939–942 (1999).CrossRefGoogle Scholar
  27. 27.
    J. Muller, M. Kylander, A. Martinez-Cortizas, R. A. J. Wüst, D. Weiss, K. Blake, B. Coles, and R. Garcia-Sanchez, “The use of principal component analyses in characterising trace and major elemental distribution in a 55kyr peat deposit in tropical Australia: Implications to paleoclimate,”Geochim. Cosmochim. Acta 72, 449–463 (2008).CrossRefGoogle Scholar
  28. 28.
    S. Pratte, A. Mucci, and M. Garneau,“Historical records of atmospheric metal deposition along the St Lawrence Valley (eastern Canada) based on peat bog cores,” Atmos. Environ.79, 831–840 (2013).CrossRefGoogle Scholar
  29. 29.
    T. Sagawa, M. Kuwae, K. Tsuruoka, Y. Nakamura, M. Ikehara, and M. Murayama, “Solar forcing of centennial-scale East Asian winter monsoon variability in the mid-to late Holocene,” Earth Planet. Sci. Lett. 395, 124–135 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Sapkota, A. K. Cheburkin, G. Bonani, and W. Shotyk, “Six millennia of atmospheric dust deposition in southern South America (Isla Navarino, Chile),” Holocene 17, 561–572 (2007).CrossRefGoogle Scholar
  31. 31.
    W. Shi, X. Feng, G. Zhang, L. Ming, R. Yin, Z. Zhao, and J. Wang, “High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan Province, China,” Chin. Sci. Bullet. 56, 877–882 (2011).CrossRefGoogle Scholar
  32. 32.
    W. Shotyk, “Review of the inorganic geochemistry of peats and peatland waters,” Earth Sci. Rev. 25, 95–176 (1988).CrossRefGoogle Scholar
  33. 33.
    W. Shotyk, “Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors,” Environ. Rev. 4, 149–183 (1996).CrossRefGoogle Scholar
  34. 34.
    W. Shotyk, “The chronology of anthropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposits from Switzerland,” Sci. Total Environ. 292, 19–31 (2002).CrossRefGoogle Scholar
  35. 35.
    W. Shotyk, R. Belland, J. Duke, H. Kempter, M. Krachler, T. Noernberg, R. Pelletier, M. A. Vile, K. Wieder, and C. Zaccone, “Sphagnum mosses from 21 ombrotrophic bogs in the Athabasca Bituminous Sands region show no significant atmospheric contamination of heavy metals,”Environ. Sci. Technol. 48, 12603–12611 (2014).CrossRefGoogle Scholar
  36. 36.
    W. Shotyk, M. Krachler, A. Martinez Cortizas, A. Cheburkin, and H. Emons, “A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12370 14C yr BP, and their variation with Holocene climate change,” Earth Planet. Sci. Lett. 199, 21–37 (2002).CrossRefGoogle Scholar
  37. 37.
    W. Shotyk, D. Weiss, P. Appleby, A. Cheburkin, R. Frei, M. Gloor, J.D. Kramers, S. Reese, and W. Van Der Knaap, “History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland,” Science 281, 1635–1640 (1998).CrossRefGoogle Scholar
  38. 38.
    SPSS, Statistical Product and Service Solution, version 11.5, (Chicago, IL, USA: SPSS Inc.,2002).Google Scholar
  39. 39.
    S. Tang, Z. Huang, J. Liu, Z. Yang, and Q. Lin, “Atmospheric mercury deposition recorded in an ombrotrophic peat core from Xiaoxing’an Mountain, northeast China,” Environ. Res. 118, 145–148 (2012).CrossRefGoogle Scholar
  40. 40.
    UNSCEAR,United Nations Scientific Committee on the Effect of Atomic Radiation, Sources and effects of ionizing radiation. UNSCEAR 2000 Report to General Assembly with Scientific Annexes, (New York, United Nations, 2000).Google Scholar
  41. 41.
    W. O. van der Knapp, and J. F. N. van Leeuwen, “Climate-pollen relationship AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps,”Holocene13, 809–828 (2003).CrossRefGoogle Scholar
  42. 42.
    H. Vanneste, F. De Vleeschouwer, A. Martínez-Cortizas, C. von Scheffer, N. Piotrowska, A. Coronato, and G. Le Roux, “Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America,” Sci. Rep. 5, 11670 (2015).CrossRefGoogle Scholar
  43. 43.
    C. Yafa, and J. G. Farmer, “A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry,” Anal. Chim. Acta 557, 296–303 (2006).CrossRefGoogle Scholar
  44. 44.
    Z. Zhou, and G. Zhang, “Typical severe dust storms in northern China during 1954–2002,” Chin. Sci. Bullet. 48, 2366–2370 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. Bao
    • 1
  • G. Wang
    • 2
  • S. Pratte
    • 1
  • L. Mackenzie
    • 1
  • A.-M. Klamt
    • 1
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
  2. 2.Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchunChina

Personalised recommendations