Organic Matter of the Salt Sequence in the Southern Part of the Yakshinskoe Potassium–Magnesium Salt Deposit
- 15 Downloads
Abstract
Organic component in the Lower Permian salt sequence in the southern part of the Yakshinskoe deposit of the Upper Pechora potassium basin is represented by dispersed organic matter, liquid hydrocarbons in fluid inclusions in halite, as well as inclusions of bacterium, algae, spore and pollen of plants. Analysis of saturated and aromatic bitumen fractions from salts, halopelites, and clayey–silty interbeds revealed the presence of organic matter of type II and mixed type II–III. It is shown that the cover sequence and potassium bed from the southern part of the Yakshinskoe potassium–magnesium salt deposit contain autochthonous immature organic matter, whereas underlying rock salt and host rocks contain significant amount of immature allochthonous components. These migration hydrocarbons are likely immature condensates.
Keywords
organic matter saliferous basin Lower Permian fluid inclusions normal and isoprenoid alkanes aromatic HC sterane and terpane HC isotope composition of organic carbon of bitumenPreview
Unable to display preview. Download preview PDF.
References
- L. A. Anishchenko, S. S. Klimenko, N. N. Ryabinkina, N. A. Malyshev, S. V. Ryabinkin, I. L. Kuplevich, A. A. Zakharov, S. F. Prozorov, V. I. Antonov, V. V. Kuznetsov, and V. M. Yudin, Organic Geochemistry and oil–gas–bearing of Permian Deposits of the north of Preural foredeep (Nauka, St. Petersburg, 2004) [in Russian].Google Scholar
- V. I. Bogatsky, A. V. Ivanov, and S. N. Agulov, “Conditions of Salt Accumulation in the Upper Pechora Saliferous Basin of the Komi ASSR,” in Problems of Salt Accumulation, Ed. by A. L. Yanshin and M. A. Zharkov (Nauka, Novosibirsk, 1977), Vol. 2, pp. 138–141.Google Scholar
- N. S. Burdelnaya, D. A. Bushnev, D. V. Kuzmin, and I. N. Burtsev, “Pechora basin coals organic geochemistry and hypercoal production,” in Book of Abstracts 28th International Meeting on Organic Geochemistry, Florence, Italy (2017). http://imog2017.org/wp–ontent/ uploads/2017/04/145.pdf.Google Scholar
- D. A. Bushnev and O. V. Valyaeva, “N–alkylbenzene and 1–n–alkylnaphthalene in the Late Devonian oil series of the Timan–Pechora Province,” Vestnik IGKomi SCUB RAS, no. 10, 17–20 (2015).Google Scholar
- D. A. Bushnev O. V. Valyaeva I. S. Kotik, N. S. Burdelnaya, and I. N. Burtsev, Composition of bitumen biomarkers from coals and host deposits of the northeastern Pechora coal basin, Vestnik IGKomi SCUB RAS, No. 8, 3–10 (2016).CrossRefGoogle Scholar
- D. A. Bushnev, Principles of Geochemical Interpretation of Data on Composition and Distribution of Individual Organic Compounds in Oils and Sedimentary Rocks (Geoprint, Syktyvkar, 1999) [in Russian].Google Scholar
- V. A. Chakhmakhchev and T. L. Vinogradova, “Geochemical indicators of facies and genetic types of parent organic matter,” Geochem. Int. 41 (5), 497–502 (2003).Google Scholar
- Y. Chen, W. Xintao, and R. J. Bodnar, “UV Raman spectroscopy of hydrocarbon–bearing inclusions in rock salt from the Dongying sag, eastern China,” Org. Geochem. 101, 63–71 (2016).CrossRefGoogle Scholar
- Z. Chen, J. Zhang, L. Wang, and M. Zha, “Geochemistry of evaporates in lacustrine basin, Dongying Depression, Bohai Bay Basin, China,” J. Pet. Environ. Biotechnol. 4 (5), (2013). http://dx.doi.org/. doi 10.4172/2157–7463.1000156Google Scholar
- J. Connan and A. M. Cassow, “Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels,” Geochim. Cosmochim. Acta 44 (1), 1–23 (1980).CrossRefGoogle Scholar
- V. A. Dorogochinskaya, A. N. Stepanov, and V. S. Fadeyev, “Geochemical factors influencing the formation of the composition of relict C17–C20 alkanes in caustobioliths,” Petrol. Chem. 33 (1), 7–16 (1993).Google Scholar
- A. I. D’yakonov, N. D. Tskhadaya, T. A. Ovcharova, V. M. Yudin, V. V. Ivanov, and N. I. Kuznetsov, Modern Evolution–Dynamic Method of Prediction of Petroleum Potential of the Geological–Ecological Regions of especially complex Structure: with Reference to the Southern Upper Pechora Basin (UGTU, Ukhta, 2002) [in Russian].Google Scholar
- L. Ellis, S. J. Fisher, R. K. Singh, R. Alexander, and R. I. Kagi, “Identification of alkenylbenzenes in pyrolyzates using GC–MS and GC–FTIR techniques: evidence for kerogen aromatic moieties with various binding sites,” Org. Geochem. 30, 651–665 (1999).CrossRefGoogle Scholar
- M. J. Fabiańska, S. R. Ćmiel, and M. Misz–Kennan, “Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: Example from 405 coal seams of the Zaleskie Beds (Poland),” Int. J. Coal Geology 107, 96–111 (2013).CrossRefGoogle Scholar
- Yu. A. Fedorov, “Dispersed organic matter of rocks of ancient saliferous basins,” Physicochemical Tendencies of Sedimentation in Saliferous Basins, Ed. by A. L. Yanshin and G. A. Merzlyakov (Nauka, Moscow, 1986), pp. 3–12 [in Russian].Google Scholar
- A. R. Galamay S. N. Shanina, and O. O. Ignatovich, “Composition of mineral–forming solutions of the Upper Pechora saliferous basin at the stage of halite crystallization,” Zap. Ross. Mineral. O–va, No. 4, 32–46 (2013).Google Scholar
- E. M. Galimov, Carbon Isotopes in the Petroleum Geology (Nedra, Moscow, 1973) [in Russian].Google Scholar
- G. N. Gordadze, V. A. Chakhmakhev, and V. I. Tikhomirov, “Geochemical type classification of lower cretaceous gas condensates from the Yamburg field in West Siberia,” Petrol. Chem. 44 (3), 147–155 (2004).Google Scholar
- S. Grishina, J. Pironon, M. Mazurov, S. Goryanov, A. Pustilnikov, G. Fon–Der–Flaas, and A. Guerchi, “Organic inclusions in salt. Part 3. Oil and gas inclusions in Cambrian evaporate deposit from East Siberia. A contribution to the understanding of nitrogen generation in evaporates,” Org. Geochem. 28 (5), 297–310 (1998).CrossRefGoogle Scholar
- O. O. Ignatovich, O. N. Slonkina, V. N. Ledentsov, O. A. Stepanov, V. F. Lapitskaya, A. N. Aksenovskii, A. P. Koshtyreva, I. V. Popov, K. V. Lapshin, I. A. Sinaisky, E. V. Babin, and Yu. I. Kononyuk, Geological Study (Prospecting and Estimation) of Mineral Salt Deposits within the Yaksha Site, Komi Republic (GBU RKTFI RK,Syktyvkar, 2013) [in Russian].Google Scholar
- A. A. Ivanov, Permian Saliferous Basins of the Pechora–Kama Cis–Urals (SO ANSSSR, Novosibirsk, 1965) [in Russian].Google Scholar
- A. A. Ivanov, and M. L. Voronova, Geology of the Upper Pechora Saliferous Basin and its Potassium Potential (VSEGEI, St. Petersburg, 1968), pp. 3–79.Google Scholar
- A. A. Ivanov, and M. L. Voronova, Halogen Formations: Mineral Composition, Types, and Conditions of Formation, Prospecting and Exploration of Mineral Salt Deposits (Nedra, Moscow, 1972) [in Russian].Google Scholar
- I. K. Ivanova and V. A. Kashirtsev, “Distribution of monoalkylbenzenes C12H18–C27H48 in Vendian–Cambrian oils of the Siberian platform,” Russ. Geol. Geophys. 51 (11), 1199–1203 (2010).CrossRefGoogle Scholar
- L. N. Kapchenko. Relation of Oil, Brines, and Salt in the Earth’s Crust (Nedra, Leningrad, 1974) [in Russian].Google Scholar
- L. N. Kapchenko E. A. Rogozina, and N. Ya. Sokolova, “Gas microinclusions in salts of the Inder Dome (Caspian region)”, Geol. Nefti Gaza, No. 5, 71–75 (1973).Google Scholar
- A. E. Kontorovich and V. P. Danilova, Geochemistry of hydrocarbons from saliferous sequences, Geol. Geofiz., No. 11, 55–63 (1984).Google Scholar
- A. E. Kontorovich, L. I. Bogorodskaya, and S. I. Golyshev, Regularities of carbon isotope fractionation in sedikahytes, Geol. Geofiz., No. 9, 34–42 (1985).Google Scholar
- A. E. Kontorovich, N. A. Verkhovskaya, I. D. Timoshina, and A. S. Fomichev, Carbon isotope composition of dispersed organic matter and bitumens and some controversial problems of the theory of oil genesis, Geol. Geofiz., No. 5, 3–13 (1986).Google Scholar
- A. E. Kontorovich V. N. Melenevsky, E. N. Ivanova, and A. N. Fomin, “Phenanthrenes, aromatic steranes, and dibenzothiophenes in Jurassic deposits of the West Siberian petroleum province: implications for organic geochemistry,” Russ. Geol. Geophys., No. 7, 824–834 (2004).Google Scholar
- V. M. Kovalevich, and D. V. Sidor, “Hydrocarbon microinclusions in rock salt of the Solikamsk Basin and their genetic significance,” Geol. Geokhim. Gor. Iskop., No. 1, 89–95 (1992).Google Scholar
- V. M. Kovalevych, T. M. Peryt, S. N. Shanina, D. Wieclaw, and S. F. Lytvyniuk, “Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt,” J. Petrol. Geol. 31 (3), 245–262. (2008).CrossRefGoogle Scholar
- A. I. Kudryashov, Upper Kama Salt Deposit (GI UrO RAN, Perm, 2001) [in Russian].Google Scholar
- K. E. Peters and J. M. Moldowan, The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments (Prentice–Hall, 1993).Google Scholar
- O. I. Petrichenko, V. M. Kovalev, and V. S. Shaidetskata, “Applied significance of technique of inclusion study in evaporite minerals”, in Geology and Geochemistry of Saliferous Deposits of Petroleum Provinces, Ed. by O. I. Petrichenko (Naukova, Dumka, Kiev, 1990), pp. 153–160 [in Russian].Google Scholar
- Al. A. Petrov, Oil Hydrocarbons (Nauka, Moscow, 1984) [in Russian].Google Scholar
- J. Pironon, M. Pagel, M. Leveque, and M. Moge, “Organic inclusions in salt. Part I: Solid and liquid organic matter, carbon dioxide and nitrogen species in fluid inclusions from the Bresse basin (France),” Org. Geochem. 23 (5), 391–402. (1995a).CrossRefGoogle Scholar
- J. Pironon, M. Pagel, F. Walgenwitz, and O. Barres, “Organic inclusions in salt. Part II: oil, gas and ammonium in inclusions from the Garbon margin,” Org. Geochem. 23 (8), 739–750.(1995b).CrossRefGoogle Scholar
- O. M. Prishchepa, V. I. Bogatsky, V. N. Makarevich, O. V. Chumakova, A. V. Kuranov, and M. M. Bogdanov, “New concepts on the tectonic and petroleumgeological zoning of the Tima–Pechora petroleum province,” Neftegaz. Geol. Teoriya Praktika 6 (4), (2011). http://www.ngtp/ru/rub/4140_2011.pdf.Google Scholar
- S. A. Punanova and T. L. Vinogradova, “Comparative characterization of natural hydrocarbon systems of various genesis,” Petrol. Chem. 56 (7), 562–571 (2016).CrossRefGoogle Scholar
- V. T. Rabotnov V. T. Gudzenko, R. N. Murogova, and V. I. Kraevsky, “Composition of gases in Upper Precambrian and Lower Cambrian salts of the Siberian Platform,” Geol. Nefti Gaza, No. 3, 25–28 (1980).Google Scholar
- V. I. Raevsky, M. P. Fiveg, V. V. Gerasimova, A. F. Gorbov, and N. M. Dzhinoridze, Potash Salt Deposits of the USSR. Methods of their Prospecting and Exploration (Nedra, Leningrad, 1973) [in Russian].Google Scholar
- E. Roedder, Fluid Inclusions (Mineral. Soc. Amer., Washington, 1984).Google Scholar
- S. N. Shanina, “Application of biomarkers for determining the genesis of organic matter in the rocks of ancient salt basins,” in Geology of Fossil Fuels of the European North of Russia, Ed. by N. A. Malyshev (Syktyvkar, 2003), pp. 109–117 [in Russian].Google Scholar
- S. N. Shanina, D. A. Bushnev, N. P. Yushkin, “Composition and genesis of hydrocarbon inclusions in salt minerals from the Verkhnyaya Kama deposit,” Dokl. Earth Sci. 373 (5), 871–873 (2000).Google Scholar
- D. V. Sidor, Extended Abstract of Candidate’s Dissertation in Geology (Lviv, 2002).Google Scholar
- Yu. S. Simakova, V. N. Ledentsov, and S. N. Shanina, Mineralogy of clay interbeds and insoluble salt remains of the Upper Pechora Deposit, in Modern Problems of Theoretical, Experimental, and Applied Mineralogy (Yushkin’s Reading–2013). Proceedings of Mineralogical Seminar with International Participation, Syktyvkar, Russia, 2013, Ed. by A. M. Askhabov, (IG KOMI SCUB RAS, Syktyvkar, 2013), pp. 124–125.Google Scholar
- L. R. Snowdon and T. G. Powell, “Immature oil and condensate–modification of hydrocarbon generation model for terrestrial organic matter,” AAPG Bull. 66 (6), 775–788 (1982).Google Scholar
- P. Sonnenfeld, Brines and Evaporites (Academic Press, New York, 1984).Google Scholar
- E. I. Taranenko, Yu. A. Gerasimov, and S. F. Farakh, “Problems of formation of gas condensate systems,” Vestn. Ross. Univ. Druzhny Narodov, Inzh. Issled., No. 1, 96–103 (2008).Google Scholar
- A. Tewari, S. Dutta, and T. Sarkar, “Biomarker signatures of Permian Gondwana coals from India and their palaeobotanical significance,” Palaeogeography, Palaeoclimatology, Palaeoecology 468, 414–426 (2017).CrossRefGoogle Scholar
- F. Tuinstra and J. Koening, “Raman spectrum of graphite,” J. Chem. Phys. 53 (3), 1126–1130 (1970).CrossRefGoogle Scholar
- N. B. Vassoevich, Selected Papers. Geochemistry of Organic Matter and Oil Origin (Nauka, Moscow, 1986) [in Russian].Google Scholar
- T. L. Vinogradova, “Criteria of difference of hydrocarbon composition of immature and biodegraded oils,” Geol. Nefti Gaza, No. 6, 55–64 (2013).Google Scholar
- T. L. Vinogradova and S. A. Punanova, “Hydrocarbon systems of early generation,” Geochem. Int. 47 (1), 99–104 (2009).CrossRefGoogle Scholar
- T. L. Vinogradova V. A. Chakhmakhchev, Z. G. Agafonova, and Z. V. Yakubson, “Hydrocarbon and heteroatomic compounds as indicators of thermal maturity of organic matter of rocks and naphthides,” Geol. Nefti Gaza, No. 6, 32–37 (2001).Google Scholar
- E. A. Vysotsky, R. G. Garetsky, and V. Z. Kislik, Potassium– Bearing Basins of the World (Nauka Tekhnika, Minsk, 1988) [in Russian].Google Scholar
- D. W. Waples and T. Machihara, “Biomarkers for geologista practical guide to the application of steranes and triterpanes in petroleum geology,” AAPG Methods Exploration 9, (1991).Google Scholar