Advertisement

Geochemistry International

, Volume 56, Issue 7, pp 651–669 | Cite as

Trace Elements in Alkaline Lamprophyres, Clinopyroxene, and Amphibole of the Tomtor Massif and the Ore Potential of the Melts

  • L. I. Panina
  • E. Yu. Rokosova
  • A. T. Isakova
  • A. V. Tolstov
Article
  • 33 Downloads

Abstract

Data obtained on lamprophyres from the carbonatite–volcanic unit in the lower horizon of the Tomtor Massif indicate that the rocks and zoned diopside and kaersutite phenocrysts in them are enriched in incompatible elements more significantly than is typical of alkaline ultramafic rocks of the Maymecha–Kotui and Kola provinces. The concentrations of these elements and their indicator ratios in the cores and intermediate zones of the diopside and kaersutite phenocrysts significantly vary, and this suggests that the minerals might have crystallized from different melts. This is consistent with the earlier conclusions, which were derived from studying melt inclusions, that the phenocrysts crystallized from mixing alkaline mafic melts of sodic and potassic types and different Mg–number which were enriched in the carbonatite component. The cores of the diopside phenocrysts started to crystallize from sodic mafic magma in a magmatic chamber, while the intermediate and outermost zones of this mineral crystallized from mixed sodic–potassic mafic melts. The carbonatite component was separated from the sodic mafic melt at high temperature (>1150°C) during diopside core crystallization. The bulk compositions of the alkaline lamprophyres and of the diopside and kaersutite phenocrysts contain lower normalized concentrations of HREE than LREE. This led us to conclude that the parental sodic and potassic mafic melts were derived from an enriched mantle source material under garnet–facies parameters, as is typical of continental rifts. It is noteworthy that the potassic mafic melt was derived at greater depths and lower degrees of melting of the mantle source than the sodic melt. The iron–rich sodic melt from which the cores of the diopside phenocrysts started to crystallize was enriched in V, REE, Y, and volatile components (H2O, CO2, F, Cl, and S). The onset of carbonate–silicate liquid immiscibility was marked by the redistribution of REE and Y into the carbonatite melt. The potassic, more Mg–rich mafic melt from which the intermediate and outermost zones of the diopside phenocrysts crystallized was enriched in Ti, Nb, Zr, and REE and always remained homogeneous when this mineral crystallized.

Keywords

alkaline lamprophyres Tomtor Massif zoned diopside and kaersutite phenocrysts trace elements ore potential of melts melt inclusions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. A. Andreeva V. I. Kovalenko, A. V. Nikiforov, and N. N. Kononkova, “Compositions of magmas, formation conditions, and genesis of carbonate–bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex, Eastern Sayan,” Petrology 15 (6), 551–574 (2007).CrossRefGoogle Scholar
  2. A. A. Arzamastsev, L. V. Arzamastseva, F. Bea, and P. Montero, “Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA–ICP–MS data for the magmatic provinces of Northeastern Fennoscandia and Germany,” Petrology 17 (1), 46–72 (2009).CrossRefGoogle Scholar
  3. Yu. A. Bagdasarov, “Assignment of igneous rocks to lamproite: major– and trace–element criteria and implications for the history of the Tomtor pluton (northwestern Yakutia),” Russ. Geol. Geophys. 50 (10), 911–917 (2009).CrossRefGoogle Scholar
  4. Yu. A. Balashov, Geochemistry of the Rare–Earth Elements (Nauka, Moscow, 1976) [in Russian].Google Scholar
  5. M. Barton and M. J. van Bergen, “Green clinopyroxenes and associated phases in a potassium–rich lava from Leucite Hills, Wyoming,” Contrib. Mineral. Petrol. 77, 101–114 (1981).CrossRefGoogle Scholar
  6. M. Barton, J. C. Varekamp, and M. J. van Bergen, “Complex zoning of clinopyroxenes in the lavas of Vulsini, Latium, Italy: evidence for magma mixing,” J. Volcanol. Geotherm. Res. 14, 361–388 (1982).CrossRefGoogle Scholar
  7. S. V. Belov, A. V. Lapin, A. V. Tolstov, and A. A. Frolov, Metallogeny of Platform Magmatism (Flood Basalts, Carbonatites, Kimberlites) (SO RAN, Novosibirsk, 2008) [in Russian].Google Scholar
  8. G. D. Borely P. Suddaby, and P. Scott, “Some xenoliths from the alkalic rocks of Teneriffe, Canary Islands,” Contrib. Mineral. Petrol. 31, 102–114 (1971).CrossRefGoogle Scholar
  9. R. A. Brooker, “The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study,” J. Petrol. 39 (11–12), 1905–1915 (1998).Google Scholar
  10. C. K. Brooks and I. Printzlau, “Magma mixing in mafic alkaline volcanic rocks: the evidence from relict phenocryst phases and other inclusions,” J. Volcanol. Geotherm. Res. 4, 315–331 (1978).CrossRefGoogle Scholar
  11. F. Chalot–Prat and M. Arnold, “Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions the upper mantle: a natural case study from Romanian mantle xenoliths,” Lithos 46 (4), 627–659 (1999).CrossRefGoogle Scholar
  12. D. B. Clarke, G. K. Muecke, and G. Pe–Piper, “The lamprophyres of the Ubekendt Ejland, West Greenland: products of renewed partial melting or extreme differentiation?” Contrib. Mineral. Petrol. 83(1–2), 117–127 (1983).CrossRefGoogle Scholar
  13. G. Dobosi and R. V. Fodor, “Magma fractionation, replenishment, and mixing as inferred from green–core clinopyroxenes in Pliocene basanite, Southern Slovakia,” Lithos 28 (2), 133–150 (1992).CrossRefGoogle Scholar
  14. A. Duda and H. U. Schmincke, “Polybaric differentiation of alkali basaltic magmas: evidence from green–core clinopyroxenes (Eifel FRG),” Contrib. Mineral. Petrol. 91 (4), 340–353 (1985).CrossRefGoogle Scholar
  15. L. S. Egorov, L. P., Surina, and G. I. Porshnev, “Udzha ore–magmatic complex of ultrabasic–alkaline rocks and carbonatites, in Ore Magmatic Complexes of the Northwestern Siberian Platform and Taymyr, Ed. by L. S. Egorov (Nedra, Leningrad, 1985), pp. 138–154 [in Russian].Google Scholar
  16. A. R. Entin, A. I. Zaitsev, N. I. Nenashev, V. B. Vasilenko, A. N. Orlov, O. A. Tyan, Yu. A. Ol’khovik, S. P. Ol’shtynsky, A. V. Tolstov, “On sequence of geological events related to the emplacement of the Tomtor massif of ultrabasic alkaline rocks and carbonatites, Northwestern Yakutia,” Geol. Geofiz. 31 (12), 42–50 (1990).Google Scholar
  17. E. N. Erlikh, “New province of alkaline rocks on the northern Siberian Platform,” Zap. Mineral. O–va 93 (6), 682–693 (1964).Google Scholar
  18. D. L. Hamilton and B. A. Kjarsgaard, “The immiscibility of silicate and carbonate liquids,” Afr. Geol. 96 (3), 139–142 (1993).Google Scholar
  19. A. W. Hofmann, “Mantle geochemistry: the message from oceanic volcanism,” Nature 385, 219–229 (1997).CrossRefGoogle Scholar
  20. A. I. Kiselev, R. E. Ernst, V. V. Yarmolyuk, and K. N. Egorov, “Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton,” J. Asian Earth Sci. 45, 1–16 (2012).CrossRefGoogle Scholar
  21. L. N. Kogarko, “Alkaline magmatism in the Earth’s history and the role of mantle metasomatism in the genesis of enriched reservoirs,” in Proceedings of Conference on “Geochemistry of Magmatic Rocks” and Scientific School “Alkaline Magmatism of the Earth, Moscow, Russia, 2005 (GEOKHI RAN, Moscow, 2005), pp. 66–68 [in Russian].Google Scholar
  22. L. N. Kogarko, L. R. Lazutkina, and L. D. Krigman, Conditions of Zirconium Concentration in Magmatic Processes (Nauka, Moscow, 1988) [in Russian].Google Scholar
  23. V. P. Kostyuk, Alkaline Magmatism of the Peripheral Framing of the Siberian Platform (GEO, Novosibirsk, 2001) [in Russian].Google Scholar
  24. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk, “Composition and chemical structure of oceanic mantle plumes,” Petrology 14 (5), 452–476 (2006).CrossRefGoogle Scholar
  25. S. M. Kravchenko, “Porphyritic potassium–rich alkalineultrabasic rocks of the Central Tomtor Massif (Arctic Siberia): carbonatized lamproites,” Russ. Geol. Geophys. 44 (9), 870–883 (2003).Google Scholar
  26. S. M. Kravchenko, and I. T. Rass, “Alkaline–ultrabasic formation as a paragenesis of two comagmatic series,” Dokl. Akad, Nauk SSSR 283 (4), 973–978 (1985).Google Scholar
  27. S. M. Kravchenko, A. Yu. Belyakov, A. I. Kubyshev, and A. V. Tolstov, “Scandium–rare–earth–yttrium–niobium ores as a new type of rare–metal raw material,” Geol. Rudn. Mestorozhd. 32 (1), 105–109 (1990).Google Scholar
  28. A. V. Lapin, and A. V. Tolstov, Deposits of the Carbonatite Weathering Crusts (Nauka, Moscow, 1995) [in Russian].Google Scholar
  29. A. V. Lapin, A. V. Tolstov, and D. V. Lisitsyn, “Structure and metallogeny of the formation family of the platform alkaline and ultrabasic magmatic rocks,” in Proceedings of 2nd All–Russian Conference “Petrography on the Turn of 21st Century: Results and Prospects, Syktyvkar, Russia, 2000 (IG KNTS SORAN, Syktyvkar, 2000), pp. 118–122 [in Russian].Google Scholar
  30. A. V. Lapin, A. V. Tolstov, and D. V. Lisitsyn, Kimberlites and Convergent Rocks: Formation Petrogeochemical Criteria (IMGRE, Moscow, 2004) [in Russian].Google Scholar
  31. R. W. Le Maitre, Igneous rocks a classification and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, 2nd Ed. (Cambridge University Press, 2002).CrossRefGoogle Scholar
  32. W. Lee and P. I. Wyllie, “Liquid immiscibility in the join NaAlSiO4–NaAlSi3O8–CaCO3 at 1 GPa: implications for crystal carbonatites,” J. Petrol. 38 (9), 1113–1135 (1997).CrossRefGoogle Scholar
  33. F. P. Lesnov, Rare–Earth Elements in Ultrabasic and Mafic Rocks and their Minerals (GEO, Novosibirsk, 2006) [in Russian].Google Scholar
  34. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  35. V. A. Milashev, M. A. Krutoyarskii, M. I. Rabkin, and E. N. Erlikh, Kimberlite Rocks and Picritic Porphyrites of the Northeastern Siberian Platform (NIIGA, Leningrad, 1963) [in Russian].Google Scholar
  36. V. B. Naumov, V. A. Dorofeeva and A. V. Girnis, “Volatile and trace elements in alkaline and subalkaline melts of ocean islands: evidence from inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 54 (6), 543–558 (2016).CrossRefGoogle Scholar
  37. I. V. Nikolaeva, S. V. Palesskii, O. A. Koz’menko, and G. N. Anoshin, “Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma–mass spectrometry (ICP–MS),” Geochem. Int. 46 (10), 1016–1022 (2008).CrossRefGoogle Scholar
  38. A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, “Minor elements in Clinopyroxene from Paleozoic volcanics of the Tagil Island Arc in the Central Urals,” Geochem. Int. 40 (3), 219–235 (2002).Google Scholar
  39. L. I. Panina, E. Yu. Rokosova, A. T. Nikolaeva, and A. V. Tolstov, “New data on the alkaline lamprophyres of the Tomtor massif,” in Proceedings of Conference on Geodynamics and Metallogeny of Northeastern Asia, Ulan Ude, Russia, 2013 (GIN SORAN, Ulan–Ude, 2013), pp. 275–279 [in Russian].Google Scholar
  40. L. I. Panina, E. Yu. Rokosova, A. T. Isakova, and A. V. Tolstov, “New data about the genesis of potassic lamprophyre of the Tomtor massif based on melt inclusions,” Alkaline Magmatism of the Earth and related strategic metal deposits, Ed. by L. N. Kogarko (GEOKHI RAS, Moscow, 2015), pp. 84–85.Google Scholar
  41. L. I. Panina, E. Yu. Rokosova, A. T. Isakova and A. V. Tolstov, “Lamprophyres of the Tomtor massif: a result of mixing between potassic and sodic alkaline mafic magmas,” Petrology 24 (6), 608–625 (2016).CrossRefGoogle Scholar
  42. L. I. Panina, E. Yu. Rokosova, A. T. Isakova, A. V. Tolstov, “Mineral composition of alkaline lamprophyres of the Tomtor Massif as reflection of their genesis,” Russ. Geol. Geophys. 58 (8), 887–902 (2017).CrossRefGoogle Scholar
  43. S. Pilet, J. Hernandez, and B. Villemant, “Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: the Na–Fe augitic green–core pyroxenes in the Tertiary alkali basalts of the Central massif (French massif Central),” Mineral. Petrol. 76, 39–62 (2002).CrossRefGoogle Scholar
  44. G. I Porshnev and L. L. Stepanov, “Geological structure and phosphate potential of the Tomtor massif (northwestern Yakutia),” in Alkaline Magmatism and Apatite Potential of Northern Siberia, Ed. by L. S. Egorov (Nedra, Leningrad, 1980), pp. 84–100 [in Russian].Google Scholar
  45. I. T. Rass, “Carbonatites as derivatives of mantle magmas,” Proceedings of 7th International Conference of the Earth’s Sciences, Odessa, Ukraine, 2011. http://www.ises.su/ 2011/pdf/rass_carbonatites.pdfGoogle Scholar
  46. G. Rivalenti, R. Vannucci, E. Rampone, M. Mazzucchelli, G. B. Piccardo, E. M. Piccirillo, P. Bottazzi, and L. Ottolini, “Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings,” Earth Planet. Scien. Lett. 139, 423–437 (1996).CrossRefGoogle Scholar
  47. I. D. Ryabchikov and A. L. Boettcher, “Experimental evidence at high pressure for potassic metasomatism in the mantle of the Earth,” Am. Mineral. 65, 915–919 (1980).Google Scholar
  48. L. V. Sazonova, A. A. Nosova, and L. G. Petrova, “Neoproterozoic riftogenic subalkali basites of the Central Urals: geochemical specifics of clinopyroxene,” Geochem. Int. 48 (3), 260–279 (2010).CrossRefGoogle Scholar
  49. K. M. Shikhorina, “High–potassium rocks of the Imar–Udzhi district, northeastern Siberian Platform,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 58–64 (1991).Google Scholar
  50. B. R. Shpunt E. A. Shamshina, F. F. Brakhfogel, and N. D. Filippov, “Composition and petrochemical features of alkaline–ultrabasic rocks of the Udzha Upift (northern Siberian Platform),” Izv. Akad. Nauk SSSR, Ser. Geol. 81, 68–80 (1991).Google Scholar
  51. E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, A. V. Ivanov, E. F. Letnikova, A. G. Mironov, I. G. Barash, V. A. Bulanova, and A. I. Sizykh, Interpretation of Geochemical Data (Intermet Inzhiniring, Moscow, 2001) [in Russian].Google Scholar
  52. A. V. Sobolev, and V. G. Batanova, “Mantle lherzolites of the Troodos ophiolite complex, Cyprus: clinopyroxene geochemistry,” Petrology 3 (5), 440–448 (1995).Google Scholar
  53. N. I. Suk, “Experimental study of liquid immiscibility in silicate–carbonate systems,” Petrology 9 (5), 477–487 (2001).Google Scholar
  54. S. Tappe, S. F. Foley, G. A. Jenner, and B. A. Kjarsgaard, “Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications,” J. Petrol. 46 (9), 1893–1900 (2005).CrossRefGoogle Scholar
  55. A. V. Tolstov, Main Ore Formations of the Northern Siberian Platform (IMGRE, Moscow, 2006) [in Russian].Google Scholar
  56. A. V. Tolstov and A. A. Tyan, Geology and Ore Potential of the Tomtor Massif (YaNTS SORAN, Yakutsk, 1999) [in Russian].Google Scholar
  57. A. V. Tolstov, A. R. Entin, A. A. Tyan, and A. N. Orlov, Economic–Grade Types of Deposits in the Carbonatite Complexes of Yakutia (YaNTS SORAN, Yakutsk, 1995) [in Russian].Google Scholar
  58. A. V. Tolstov A. D. Konoplev, and V. I. Kuzmin, “Specifics of formation of the unique rare–metal Tomtor deposit and estimation of its development prospects,” Razved. Okhr. Nedr, No. 6, 20–25 (2011).Google Scholar
  59. N. V. Vladykin, “Potassic alkaline rocks and lamproites of the Tomtor massif,” Proceedings of the Conference of the Alkaline Magmatism of the Earth, GEOKHI RAS, Moscow, 2001 (GEOKHI RAN, Moscow, 2001), pp. 17–18 [in Russian].Google Scholar
  60. N. V. Vladykin and T. S. Torbeeva, “Lamproites of the Tomtor Massif (eastern Anabar Area),” Russ. Geol. Geophys. 46 (10), 1024–1036 (2005).Google Scholar
  61. N. V. Vladykin A. B. Kotov, A. S. Borisenko, V. V. Yarmolyuk, N. P. Pokhilenko, E. B. Sal’nikova, A. V. Travin, and S. Z. Yakovleva, Age boundaries of formation of the Tomtor Alkaline–Ultramafic Pluton: U–Pb and 40Ar/39Ar Geochronological Studies, Dokl. Earth Sci. 454 (2), 195–199 (2014).Google Scholar
  62. K. T. Wang, Plank, J. D. Walker, and E. L. Smith, “A mantle melting profile across the Basin and Range, SWUSA,” J. Geophys. Res. (2002) 107 (B1). doi 10.1029/2001JB000209Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. I. Panina
    • 1
  • E. Yu. Rokosova
    • 1
  • A. T. Isakova
    • 1
  • A. V. Tolstov
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations