Advertisement

Geochemistry International

, Volume 56, Issue 7, pp 702–710 | Cite as

Fractionation of Carbonate Carbon (Ccarb) Accumulation between Continents and Oceans in the Late Mesozoic–Cenozoic

  • M. A. Levitan
Article
  • 19 Downloads

Abstract

The Ccarb masses per time unit was determined for separate oceanic basins and for the entire World Ocean using lithological–facies mapping of the Neo– and Eopleistocene age sections of the Pleistocene pelagic zones in the World Ocean. These parameters are compared with those of continents, continental shelves and slopes, and oceans, which were recalculated using data by Ronov (1993) for the Upper Jurassic–Pliocene. At the Mesozoic–Cenozoic boundary, carbonate accumulation was shifted from continents to oceans. The accumulation of carbonate sediments on continents is determined by areas of epicontinental seas. Significant role in the history of oceanic carbonate sedimentation is played by the nutrient fluxes from continents into the World Ocean. Subduction and evolution of the carbonate compensation depth (CCD) play significant role in calculating the quantitative parameters of carbonate accumulation in ocean.

Keywords

bottom sediments continental margins World Ocean Eopleistocene Neopleistocene areas mass of dry sediment volumes mass of sediments per time unit carbonate ooze 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Berger, “Calcite Compensation Depth (CCD),” Encyclopedia of Marine Geosciences (Springer, 2016), pp. 71–73.CrossRefGoogle Scholar
  2. W. H. Berger and E. L. Winterer, “Plate stratigraphy and the fluctuating carbonate line,” Pelagic Sediments: On Land and Under the Sea, Ed. by K. J. Hsü and H. C. Jenkyns (Blackwell, Oxford, 1974), pp. 11–98.Google Scholar
  3. R. A. Berner, “GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2,” Geochim. Cosmochim. Acta 70, 5653–5664 (2006).CrossRefGoogle Scholar
  4. N. M. Chumakov, Earth’s Glaciations. History, Stratigraphic Significance, and Role in the Biosphere (GEOS, Moscow, 2015) [in Russian].Google Scholar
  5. C. P. Conrad and C. Lithgow–Bertelloni, “Faster seafloor spreading and lithosphere production during the mid–Cenozoic,” Geology 35 (1), 29–32 (2007).CrossRefGoogle Scholar
  6. J. W. Farrell I. Raffi, T. R. Janecek, D. W. Murray, M. A. Levitan, K. A. Dadley, K.–C. Emeis, M. Lyle, J.–A. Flores, and S. Hovan, “Late Neogene sedimentation patterns in the eastern equatorial Pacific,” Proc. ODP, Sci. Results 138, 717–756 (1995).Google Scholar
  7. Geological–Geophysical Atlas of the Atlantic Ocean, Ed. by G. B. Udintsev, (MOK (YUNESCO)–MINGEO USSR–AN USSR–GUGK USSR, Moscow, 1989–1990). [in Russian].Google Scholar
  8. Geological–Geophysical Atlas of the Indian Ocean, Ed. by G. B. Udintsev (Akad. nauk SSSR, Moscow, 1975) [in Russian].Google Scholar
  9. F. M. Gradstein, J. G. Ogg, M. D. Schmitz, and G. M. Ogg, The Geologic Time Scale 2012 (Elsevier, Amsterdam, 2012).Google Scholar
  10. W. W. Hay, L. S. Sloan, and C. N. Wold, “Mass/Age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction,” J. Geophys. Res. 93 (B12), 14933–14940 (1988).CrossRefGoogle Scholar
  11. International Geological–Geophysical Atlas of the Pacific Ocean, Ed. by G. B. Udintsev, (MOK (YUNESCO), RAN, GUNIO MORF, Moscow–St. Petersburg, 2003) [in Russian].Google Scholar
  12. V. N. Ivanenkov, “General tendencies in distribution of biogenic elements in the World Ocean”, in Chemistry of Ocean Waters, Ed. by O. K. Bordovskii and V. N. Ivanenkov (Nauka, Moscow, 1979), pp. 188–228 [in Russian].Google Scholar
  13. J. M. Kennett, Marine Geology (Prentice–Hall, Englewood Cliffs, 1982).Google Scholar
  14. V. E. Khain, Tectonics of Continents and Oceans (Moscow, Nauchnyi Mir, 2001) [in Russian].Google Scholar
  15. K. S. D. Kochhann, A. Holbourn, W. Kuhnt, J. E. T. Channell, M. Lyle, J. K. Shackford, R. H. Wilkens, and N. Andersen, “Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene climatic optimum,” Paleoceanography 31, (2016) doi 10.1002/2016PA002988Google Scholar
  16. V. G. Kuznetsov, Evolution of Carbonate Accumulation in the Earth’s History (GEOS, Moscow, 2003) [in Russian].Google Scholar
  17. V. G. Kuznetsov, “Evolutionary section of lithology: emergence, state, and relationships of rock formation with evolution of the organic world,” in A Review of Conceptual Problems of Lithology, Ed. by O. V. Yapaskurt (GEOS, Moscow, 2012), pp. 34–70 [in Russian].Google Scholar
  18. M. A. Levitan, “Diagenesis (and catagenesis) of carbonate deposits,” in Geological History of Ocean, Ed. by A. S. Monin and A. P. Lisitzin (Nauka, Moscow, 1980a) pp. 342–348 [in Russian].Google Scholar
  19. M. A. Levitan, “Hiatuses in the sedimentary cover of the Atlantic Ocean,” Byul. Mosk. O–va Ispyt. Prir., Otd. Geol. 55 (3), 111–116.(1980b).Google Scholar
  20. M. A. Levitan, “Quantitative parameters of Pleistocene pelagic sedimentation in the World Ocean: global trends and regional features,” Geochem. Int. 55 (5), 428–441 (2017).CrossRefGoogle Scholar
  21. M. A. Levitan, and Yu. A. Bogdanov, “History of carbonate accumulation,” in Geological History of Ocean, Ed. by A. S. Monin and A. P. Lisitzin (Nauka, Moscow, 1980), pp. 260–277 [in Russian].Google Scholar
  22. M. A. Levitan, Paleooceanology of the Indian Ocean in the Cretaceous–Pliocene (Nauka, Moscow, 1992) [in Russian].Google Scholar
  23. M. A. Levitan and T. N. Gelvi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Atlantic Ocean,” Geochem. Int. 54 (12), 1049–1060 (2016).CrossRefGoogle Scholar
  24. M. A. Levitan, Kh. M. Saidova, and O. B. Dmitrenko, “Some features of planktonogenic carbonate accumulation in the Indian Ocean in Cenozoic,” Okeanologiya 27 (1), 82–88 (1987).Google Scholar
  25. M. A. Levitan, A. N. Balukhovsky, T. A. Antonova, and T. N. Gelvi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Pacific Ocean,” Geochem. Int. 51 (5), 345–352 (2013).CrossRefGoogle Scholar
  26. M. A. Levitan, T. A. Antonova, and T. N. Gelvi, “Facies structure and quantitative parameters of Pleistocene pelagic sedimentation in the Indian Ocean,” Geochem. Int. 52 (4), 316–324 (2014).CrossRefGoogle Scholar
  27. A. P. Lisitzin, Processes of Oceanic Sedimentation (Nauka, Moscow, 1978) [in Russian].Google Scholar
  28. L. M. Mejía, A. Méndez–Vicente, L. Abrevaya, K. T. Lawrence, C. Ladlow, C. Bolton, I. Cacho, and H. Stoll, “A diatom record of CO2 decline since the late Miocene,” Earth Planet. Sci. Lett. 479, 18–33 (2017).CrossRefGoogle Scholar
  29. R. D. Müller, M. Sdrolias, K. Gaina, B. Steinberger, and Ch. Heine, “Long–term sea–level fluctuations driven by ocean basin dynamics,” Science 319, 1357–1362 (2008).CrossRefGoogle Scholar
  30. M. Pagani, M. Huber, Z. Liu, S. M. Bohaty, J. Hendriks, W. Sijp, S. Krishnan, and R. M. DeConto, “The role of carbon dioxide during the onset of Antarctic Glaciation,” Science 334, 1261–1264 (2011).CrossRefGoogle Scholar
  31. A. T. S. Ramsay, “The distribution of calcium carbonate in deep sea sediments,” Paleoceanography, Ed. by W. W. Hay, SEPM Spec. Publ. 20, 57–76 (1974).Google Scholar
  32. A. B. Ronov, Sedimentation History and Oscillatory Movements in the European Part of the USSR (Geofiz. Inst. Akad. Nauk SSSR, Moscow, 1949) [in Russian].Google Scholar
  33. A. B. Ronov, Sedimentary Cover of the Earth: Quantitative Tendencies of Structure, Composition, and Evolution (Nauka, Moscow, 1980) [in Russian].Google Scholar
  34. A. B. Ronov, Stratisphere or Sedimentary Cover of the Earth (Nauka, Moscow, 1993) [in Russian].Google Scholar
  35. A. B. Ronov, “Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition,” Am. J. Sci. 294, 777–801 (1994).CrossRefGoogle Scholar
  36. A. B. Ronov, V. E. Khain, and A. N. Balukhovsky, “Global quantitative sedimentation balance on continents and oceans for the last 150 Ma,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 3–11 (1986).Google Scholar
  37. A. Ronov, V. Khain, and A. Balukhovsky, Atlas of Lithological– Paleogeographical Maps of the World. Mesozoic and Cenozoic of Continents and Oceans (Mingeo, Leningrad, 1989).Google Scholar
  38. V. S. Savenko, and A. V. Savenko, Phosphorus Geochemistry in the Global Hydrological Cycle (GEOS, Moscow, 2007) [in Russian].Google Scholar
  39. M. Steinberg, “Fluctuations of the accumulation rate of the sediments deposited in the South Atlantic Ocean during the last 120 m.y.,” Compt. Rend. de l’Acad. Des Sci. 308. Ser. II (10), 941–946 (1989).Google Scholar
  40. J. Thiede and W. U. Ehrmann, “Late Mesozoic and Cenozoic sediment flux to the central North Atlantic,” North Atlantic Paleoceanography, Ed. by C. P. Summerhayes and N. J. Shackleton, Geol. Soc. Amer. Spec. Publ. 21, 3–15 (1986).Google Scholar
  41. T. Tyrrell and R. E. Zeebe, “History of carbonate ion concentration over the last 100 million years,” Geochim. Cosmochim. Acta 68 (17), 3521–3530 (2004).CrossRefGoogle Scholar
  42. T. H. Van Andel, C. R. Heath, and T. C. Moore, “Cenozoic tectonics, sedimentation and paleoceanography of the central equatorial Pacific,” Geol. Soc. Amer. Mem. 143, 1–65 (1975).CrossRefGoogle Scholar
  43. J. Zachos, M. Pagani, L. Sloan, E. Thomas, and K. Billups, “Trends, rhythms, and aberrations in global climate 65 Ma to Present,” Science 292, 868–893 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations