Advertisement

Fluid Dynamics

, Volume 53, Issue 5, pp 670–679 | Cite as

Effect of a Magnetizable Surfactant on the Motion of a Liquid Film on the Horizontal Surface

  • A. V. Zhukov
Article
  • 9 Downloads

Abstract

The motion of a thin liquid film of viscous incompressible fluid on the horizontal surface in the presence of a magnetizable surfactant on the free boundary in the external inhomogeneous magnetic field is investigated. Surfactant diffusion along the free surface and the dependence of the surface tension on the magnetic field strength are taken into account. The system of evolutionary equations is derived in the lubricant approximation and steady-state film flows and their stability in the case of constant film thickness and constant surfactant number density are investigated with regard to the Marangoni effect.

Key words

thin liquid film magnetizable surfactant stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.V. Craster and O.K. Matar, “Dynamics and Stability of Thin Liquid Films,” Rev. Mod. Phys. 81 (3), 1131–1198 (2009). DOI: https://doi.org/10.1103/RevModPhys.81.1131ADSCrossRefGoogle Scholar
  2. 2.
    O. K. Matar and S. M. Troian, “Linear Stability Analysis of an Insoluble SurfactantMonolayer Spreading on a Thin Liquid Film,” Phys. Fluids 9 (12), 3645–3657 (1997). DOI: https://doi.org/10.1063/1.869502ADSCrossRefGoogle Scholar
  3. 3.
    M.G. Velarde, V.Ya Shkadov, and V.P. Shkadova, “Influence of a Surfactant on the Instability of a Falling Liquid Film,” Fluid Dynamics 35 (4), 515–524 (2000).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Brown, T. A. Hatton, and J. Eastoe, “Magnetic Surfactants,” Current Opinion in Colloid and Interface Science 20 (3), 140–150 (2015). DOI: https://doi.org/10.1016/j.cocis.2015.08.002CrossRefGoogle Scholar
  5. 5.
    L. Wang, S. Dong, and J. Hao, “Recent Progress of Magnetic Surfactants: Self-assembly, Properties and Functions,” Curr. Opinion in Colloid and Interface Science 35, 81–90 (2018). DOI: https://doi.org/10.1016/j.cocis.2018.01.014CrossRefGoogle Scholar
  6. 6.
    A. N. Golubyatnikov and G. I. Subkhankulov, “Surface tension of a magnetic liquid,” Magnetohydrodynamics 22 (1), 62–66 (1986).Google Scholar
  7. 7.
    A. V. Zhukov, “Structure of the Fluid Interface in an External Magnetic Field in the Presence of a Magnetizable Surfactant,” Fluid Dynamics 51 (4), 463–468 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. N. Golubyatnikov, “Thermodynamic Stability of Anisotropic Magnetic Fluids and Their Surfaces in a Magnetic Field,” UspekhiMekhaniki 4 (3), 3–25 (2006).Google Scholar
  9. 9.
    A. V. Zhukov, “Structure and Stability of the Interface between Magnetic and Conventional Fluids. Model of a Three-ComponentMedium,” Fluid Dynamics 48 (5), 599–611 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. G. Levich, Physicochemical Hydrodynamics (Institute of Computer Research,Moscow, Izhevsk, 2016) [in Russian].Google Scholar
  11. 11.
    S. R. de Groot and P.Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962; Mir, Moscow, 1964).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations