Advertisement

Fluid Dynamics

, Volume 53, Issue 5, pp 642–653 | Cite as

Estimation of the Geometric Parameters of a Reservoir Hydraulic Fracture

  • V. A. BaikovEmail author
  • G. T. Bulgakova
  • A. M. Il’yasov
  • D. V. Kashapov
Article
  • 11 Downloads

Abstract

The exact solution of self-excited vibrations of a reservoir hydraulic fracture after stopping the hydraulic fracture fluid injection is obtained on the basis of the generalized hyperbolictype Perkins-Kern-Nordgren model of the development of vertical reservoir hydraulic fracture. The vibrations are excited by the rarefaction wave developed after stopping the injection. The solution obtained is used to estimate the height, the width, and the half-length of the reservoir hydraulic fracture on the basis of the field data of bottomhole pressure gauges by the time of stopping the hydraulic fracture fluid injection.

Key words

reservoir hydraulic fracture rarefaction wave natural vibrations of a reservoir hydraulic fracture geometric fracture parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. E. Joukowsky, “Über den hydraulischen Stoss in Wasserleitungsro¨ hren [On the hydraulic hammer in water supply pipes],” Memoires de l’Academie Imperiale des Sciences de St.-Petersbourg, Ser. 8 9 (5), 1–71 (1900) [in German].Google Scholar
  2. 2.
    S. A. Khristianovich, Continuum Mechanics (Nauka, Moscow, 1981) [in Russian].Google Scholar
  3. 3.
    I. A. Charnyi, Unsteady Pipe Flow of a Real Fluid (GITTL,Moscow, Leningrad, 1951) [in Russian].Google Scholar
  4. 4.
    M. Kay, Practical Hydraulics, 2nd ed. (Taylor and Francis, 2008).Google Scholar
  5. 5.
    A. Tijsselin and A. Anderson, “Johannes von Kries and the History ofWater Hammer,” Journal of Hydraulic Engineering 133 (1), 1–8 (2007).CrossRefGoogle Scholar
  6. 6.
    E. B. Wylie and V. L. Streeter, Fluid Transients in Systems (Prentice-Hall, Englewood Cliffs, N.J., 1993).Google Scholar
  7. 7.
    C. R. Holzhausen and R. P. Gooch, “Impedance of Hydraulic Fracture: Its Measurement and Use for Estimating Fracture Closure and Dimensions,” Paper SPE 13892 Presented at SPE/DOE Low Permeability Gas Reservoirs Symposium, Denver,May 19–22, 1985. DOI: https://doi.org/10.2118/13892-MSGoogle Scholar
  8. 8.
    T. W. Patzek and A. De, “Lossy Transmission Line Model of Hydrofractured Well Dynamics,” Journal of Petroleum Science and Engineering 25 (1–2), 59–77 (2000). DOI: https://doi.org/10.2118/46195-MSCrossRefGoogle Scholar
  9. 9.
    R. W. Paige, L. R. Murray, and J. D. M. Roberts, “Field Application of Hydraulic Impedance Testing for FractureMeasurement,” SPE J. 10 (01), 6–12 (1995). DOI: https://doi.org/10.2118/26525-PAGoogle Scholar
  10. 10.
    J.N. Sneddon and D.S. Berry, The Classical Theory of Elasticity (Springer, Berlin etc., 1958; Fizmatgiz, Moscow, 1961).Google Scholar
  11. 11.
    M. A. Carey, S. Mondal, and M. M. Sharma, “Analysis of Water Hammer Signatures for Fracture Diagnostics,” Paper SPE-174866-MS Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, September 28–30, 2015. DOI: http://dx.doi.org/10.2118/174866-MSGoogle Scholar
  12. 12.
    J. Iriarte, J. Merritt, and B. Kreyche, “UsingWater Hammer Characteristics as a Fracture Treatment Diagnostic,” Paper SPE-185087-MC Presented at the 2017 SPE Oklahoma City Oil and Gas Symposium, 27–31 March, Oklahoma City, Oklahoma, USA. DOI: https://doi.org/10.2118/185087-MSGoogle Scholar
  13. 13.
    A. M. Il’yasov and G. T. Bulgakova, “Quasi-one-dimensional Model of the Hyperbolic Type of Reservoir Hydraulic Fracturing,” Vest. Sam. Gos. Tekhn. Un-ta Ser. Fiz.-Mat. Nauki 20 (4), 739–754 (2016). DOI: http://dx.doi.org/10.14498/vsgtu1522CrossRefzbMATHGoogle Scholar
  14. 14.
    T. K. Perkins and L. R. Kern, “Width of Hydraulic Fractures,” Journal of Petroleum Technology 13 (4), 937949 (1961).Google Scholar
  15. 15.
    R. P. Nordgren, “Propagation of a Vertical Hydraulic Fracture,” Society of Petroleum Engineers J. 12 (4), 306–314 (1972).CrossRefGoogle Scholar
  16. 16.
    I. E. Idel’chik, Handbook on Hydraulic Resistances (Mashinostroenie,Moscow, 1992) [in Russian].Google Scholar
  17. 17.
    O. E. Ivashnev and N. N. Smirnov, “Formation of a Hydraulic Fracture in a Porous Medium,” Vestn. MGU. Matematika,Mekhanika 6, 28–36 (2003).zbMATHGoogle Scholar
  18. 18.
    F. I. Kotyakhov, Physics of Gas and Oil Reservoirs (Nedra, Moscow, 1977) [in Russian].Google Scholar
  19. 19.
    P. Malkowski and L. Ostrowski, “The Methodology for the Young Modulus Derivation for Rocks and Its Value,” in: Proc. ISRM European Rock Mechanics Symposium—EUROCK, June 2–22, 2017, Ostrava, 191 (Elsevier Ltd, 2017), p. 134–141.Google Scholar
  20. 20.
    A.M. Il’yasov, “Estimation of the Strength of a Cement Ring Adjacent to the Borehole of a ProductionWell,” Zh. Prikl.Mekh. Tekh. Fiz. 58 (1), 210–217 (2017).Google Scholar
  21. 21.
    Yu. N. Rabotnov, Mechanics of Deformed Solid Body (Nauka, Moscow, 1988) [in Russian].Google Scholar
  22. 22.
    M. J. Economides and T. Martin, Modern Fracturing. Enhancing Natural Gas Production (Energy Tribune Publishing Inc., Houston, TX. USA, 2007).Google Scholar
  23. 23.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  24. 24.
    M. J. Economides and K. G. Nolte, Reservoir Stimulation (Wiley, NY and Chichester, 2000).Google Scholar
  25. 25.
    P. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Baikov
    • 1
    Email author
  • G. T. Bulgakova
    • 1
  • A. M. Il’yasov
    • 1
  • D. V. Kashapov
    • 2
  1. 1.Ufa Aviation Technical State UniversityUfaRussia
  2. 2.Mavlyutov Institute of Mechanics of the Ural Scientific Center of the Russian Academy of SciencesUfaRussia

Personalised recommendations