Advertisement

Fluid Dynamics

, Volume 53, Issue 4, pp 536–551 | Cite as

Application of Model Kinetic Equations to Calculations of Super- and Hypersonic Molecular Gas Flows

  • V. A. Titarev
  • A. A. Frolova
Article
  • 4 Downloads

Abstract

For the purpose of taking the internal degrees of freedom into account, threetemperature approximating model equations, which are a generalization of the R- and ES–BGKmodels, are proposed for a diatomic gas. The surface pressure, friction, and heat transfer coefficients are compared with the direct simulation Monte Carlo (DSMC) solution in the problem of flow past a cylinder in the super- and hypersonic flow regimes. The dependence of the surface coefficients on the rotational collision number is analyzed.

Keywords

rarefied gas kinetic equations diatomic gas supersonic flows hypersonic flows R-model ES–BGK-model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. D. Shevelev, N. G. Syzranova, E. V. Kustova, and E. A. Nagnibeda, “Numerical Investigations of Hypersonic Flow past Aerospace Vehicles Entering the Atmosphere of Mars,” Matem. Modelirovanie 22 (9), 23–50 (2010).zbMATHGoogle Scholar
  2. 2.
    E. Josyula and W. Bailey, “Governing Equations for Weakly Ionized Plasma Flow Fields of Aerospace Vehicles,” J. Spacecraft and Rockets 40 (6), 845–857 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    G. Colonna, I. Armenise, D. Bruno, and M. Capitelli, “Reduction of State-to-State Kinetics to Macroscopic Models in Hypersonic Flows,” J. Thermophys. Heat Transfer 20 (3), 477–486 (2006).CrossRefGoogle Scholar
  4. 4.
    E. A. Bondar, A. A. Shevyrin, I. S. Chen, A. N. Shumakova, A. V. Kashkovskii, and M. S. Ivanov, “Direct Statistical Simulation of High-Temperature Chemical Reactions in Air,” Teplofiz. Aeromekh. 20 (5), 561–573 (2013).Google Scholar
  5. 5.
    V. A. Rykov and I. N. Larina, “KineticModel of the Boltzmann Equation for a Diatomic Gas with Rotational Degrees of Freedom,” Zh. Vychisl.Matem.Matemat. Fiz. 50 (12), 2233–2245 (2010).zbMATHGoogle Scholar
  6. 6.
    A. M. Bishaev and V. A. Rykov, “Construction of the System of Kinetic Equations for a Nonideal Gas,” Teplofiz. Vysokh. Temperature 55 (1), 31–43 (2017).Google Scholar
  7. 7.
    C. Tantos, G. P. Ghiroldi, D. Valougeorgis, and A. Frezzotti, “Effect of Vibrational Degrees of Freedom on the Heat Transfer in PolyatomicGases Confined Between Parallel Plates,” Intern. J. Heat andMassTransfer 102, 162–173 (2016).CrossRefGoogle Scholar
  8. 8.
    F. G. Cheremisin, “Solution of the Kinetic Equation for High-Speed Flows,” Zh. Vychisl.Matem.Matemat. Fiz. 46 (2), 329–343 (2006).MathSciNetzbMATHGoogle Scholar
  9. 9.
    R. R. Arslanbekov, V. I. Kolobov, and A. A. Frolova, “Kinetic Solvers with Adaptive Mesh in Phase Space,” Phys. Rev. E, 063301 (2013)Google Scholar
  10. 10.
    C. S. Wang Chang and G. E. Uhlenbeck, Transport Phenomena in Polyatomic Gases, CM-681, Univ. of Michigan Research Report (1951).Google Scholar
  11. 11.
    F. G. Cheremisin, “Solution of theWang Chang–Uhlenbeck Kinetic Equation,” Dokl. Ros. Akad. Nauk 387 (4), 1 (2001).Google Scholar
  12. 12.
    Yu. A. Anikin and O. I. Dodulad, “Solution of the Kinetic Equation for a Diatomic Gas Using the Differential Scattering Cross-Sections Calculated by the Classical TrajectoryMethod,” Zh. Vychisl.Matem. Matemat. Fiz. 53 (7), 1193–1211 (2013).zbMATHGoogle Scholar
  13. 13.
    T. F. Morse, “Kinetic Model for Gases with Internal Degrees of Freedom,” Phys. Fluids 7 (2), 159–169 (1964).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L. H. Holway, “New StatisticalModels for Kinetic Theory: Methods of Construction,” Phys. Fluids 9, 1658–1673 (1966).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Rykov, “A Model Kinetic Equation for a Gas with Rotational Degrees of Freedom,” Fluid Dynamics 10 (6), 959–966 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    P. Andries, P. LeTallec, J. Perlat, and B. Perthame, “The Gaussian-BGKModel of Boltzmann Equation with Small Prandtl Number,” Eur. J. Mech. B "—Fluids 19, 813–830 (2000).CrossRefzbMATHGoogle Scholar
  17. 17.
    E. M. Shakhov, “Generalization of the Krook Kinetic Relaxation Equation,” Fluid Dynamics 3 (5), 95–96 (1968).ADSCrossRefGoogle Scholar
  18. 18.
    V. A. Titarev, “Application of Model Kinetic Equations to Hypersonic Rarefied Gas Flows,” Computers and Fluids. Special Issue “Nonlinear Flow and Transport”, DOI 10.1016/j.compfluid.2017.06.019 (2017).Google Scholar
  19. 19.
    V. M. Zhdanov and M. Ya. Alievskii, Transport and Relaxation Processes in Molecular Gases (Nauka, Moscow, 1989) [in Russian].Google Scholar
  20. 20.
    V. A. Rykov and V. N. Skobelkin, “MacroscopicDescription of theMotions of a Gas with Rotational Degrees of Freedom,” Fluid Dynamics 13 (1), 144–147 (1978).ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Lei Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhan, “A kinetic Model of the Boltzmann Equation for Non-Vibrating Polyatomic Gases,” J.FluidMech. 763, 24–50 (2015).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. G. Parker, “Rotational and Vibrational Relaxation in Diatomic Gases,” Phys. Fluids 2 (4), 449–462 (1959).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13 (2), 291–308 (1970).ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    R. C. Millikan and R. W. White, “Systematics of Vibrational Relaxation,” J. Chem. Phys. 39 (12), 3209–3213 (1963).ADSCrossRefGoogle Scholar
  25. 25.
    C. Park, “Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles,” in: Thermal Design of Aeroassisted Orbital Transfer Vehicles, Progress in Astronautics and Aeronautics, Vol. 96 (AIAA. Washington. DC., 1985), p.511.Google Scholar
  26. 26.
    A. J. Lofthouse, Nonequilibrium Hypersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier-StokesModels (PhD Dissertation, Univ.Michigan, 2008).Google Scholar
  27. 27.
    V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A. Zabelok, “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinement,” J. Comput. Phys. 223, 589–608 (2007).ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    V. A. Rykov, V. A. Titarev, and E. M. Shakhov, “Numerical Investigation of Transverse Supersonic Diatomic Gas Flow past a Plate,” Zh. Vychisl.Matem.Matemat. Fiz. 47 (1), 144–158 (2007).zbMATHGoogle Scholar
  29. 29.
    V. A. Titarev, “Efficient Deterministic Modelling of Three-Dimensional Rarefied Gas Flows,” Commun. Comput. Phys. 12 (1), 161–192 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    V. A. Titarev, “Programm Software for Simulating Three-Dimensional Flows of aMonatomic Rarefied Gas,” Certificate of State Registration of Computer Programs No. 2017616295 (2017).Google Scholar
  31. 31.
    Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer,” Otkrytye Sistemy. SUBD, 7, 36–39 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control” of the Russian Academy of SciencesMoscowRussia

Personalised recommendations