Advertisement

Fluid Dynamics

, Volume 53, Issue 4, pp 471–478 | Cite as

Variational Rayleigh Problem of Gas Lubrication Theory. Low Compressibility Numbers

  • Yu. Ya. Boldyrev
Article
  • 5 Downloads

Abstract

The two-dimensional variational problem for a gas-lubricated slider bearing is considered. In the gas layer the pressure field is described by the linear Reynolds equation which corresponds to low compressibility numbers. The boundary conditions are the conditions of vanishing the excess pressure on the boundaries of the domain. The load capacity acts as the functional of the variational problem. The system of necessary conditions of extremum which underlies the calculation algorithm is analyzed qualitatively. The present study develops radically and supplements the results of author’s studies at the modern level of theoretical and computational possibilities.

Keywords

Gas lubrication calculus of variations maximum load capacity two-dimensional problem low compressibility numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lord Rayleigh, “Notes on the Theory of Lubrication,” Phil.Mag. 35 (1), 1–12 (1918).CrossRefGoogle Scholar
  2. 2.
    C. J. Maday, “A Bounded Variable Approach to the Optimum Slider Bearing,” Trans.ASME. Ser.F. J. Lubr. Technol. 90 (1), 240–242 (1968).CrossRefGoogle Scholar
  3. 3.
    Yu. Ya. Boldyrev and V. A. Troitskii, “A Three-Dimensional Variational Problem in the Gasdynamic Theory of a Lubricant,” Fluid Dynamics 10 (5), 736–741 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. Ya. Boldyrev and Yu. V. Borisov, “Gas-Lubricated Sector Thrust Bearing withMaximum Load Capacity,” Fluid Dynamics 25 (6), 838–845 (1990).ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Yu. Ya. Boldyrev, S. V. Lupulyak, and Yu. K. Shinder, “Numerical Solution of the Variational Rayleigh Problem of Gas Lubrication Theory,” Fluid Dynamics 30 (6), 826–832 (1995).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    J. L. Lions, Contrôl Optimal de Syst èmes Gouvern és par des Équations aux Dériveés Partielles (Dunot Gauthier-Villars, Paris, 1968; Mir, Moscow, 1972).Google Scholar
  7. 7.
    K. A. Lur’e, OptimumControl in Problems of Mathematical Physics (Nauka, Moscow, 1975) [inRussian].Google Scholar
  8. 8.
    Yu. Ya. Boldyrev and B. S. Grigor’ev, “Numerical Solution of the Rayleigh Equation of Gas-Film Lubrication Using the Finite-Element Method,” Mashinovedenie, No. 5, 78–84 (1982).Google Scholar
  9. 9.
    I. E. Sipenkov, A. Yu. Filippov, Yu. Ya. Boldyrev, B. S. Grigor’ev, N. D. Zablotskii, T. A. Luchin, and T. V. Panich, Precision Gas Bearings (Izd. TsNII “Elektropribor”, Saint-Petersburg, 2007) [in Russian].Google Scholar
  10. 10.
    Yu. Ya. Boldyrev, Calculus of Variations and Optimization Methods. Manual (Polytechnic University Press, Saint-Petersburg, 2016) [in Russian].Google Scholar
  11. 11.
    O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type (Nauka, Moscow, 1964) [in Russian].zbMATHGoogle Scholar
  12. 12.
    L. G. Stepanyants, “Slow Fluid Motion in the Neighborhood of a Distorted Surface. Technical Fluid Dynamics,” Tr. LPI, 217, 117–126 (1961).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and MechanicsPeter the Great Saint-Petersburg Polytechnic UniversitySaint-PetersburgRussia

Personalised recommendations