Advertisement

Doklady Physical Chemistry

, Volume 487, Issue 2, pp 109–112 | Cite as

Heat Capacity and Thermodynamic Properties of SmFeGe2O7 in the Range 350–1000 K

  • L. T. DenisovaEmail author
  • A. D. Izotov
  • Yu. F. Kargin
  • L. A. Irtyugo
  • V. V. Beletskii
  • N. V. Belousova
  • V. M. Denisov
PHYSICAL CHEMISTRY

Abstract

SmFeGe2O7 germanate has been synthesized by solid-state reactions from stoichiometric mixtures of starting oxides using multistage sintering in the temperature range 1273‒1473 K. The effect of temperature on the heat capacity of the compound has been studied by differential scanning calorimetry. On the basis of the dependence Cp = f(T), the thermodynamic properties of this compound have been calculated.

Notes

REFERENCES

  1. 1.
    Dem'yanets, L.N., Lobachev, A.N., and Emel’chen-ko, G.A., Germanaty redkozemel’nykh elementov (Rare Earth Germanates), Moscow: Nauka, 1980.Google Scholar
  2. 2.
    Cascales, C., Fernandez-Diaz, M.T., Monge, M.A., and Bucio, L., Chem. Mater., 2002, vol. 14, pp. 1885–2003.Google Scholar
  3. 3.
    Juarez-Arellano, E.A., Campa-Molina, J., Ulloa-Godinez, S., et al., Mater. Res. Soc. Symp. Proc., 2005, vol. 848, pp. FF6.15.1–FF6.15.8.Google Scholar
  4. 4.
    Mil', B.D., Kazei, Z.A., Reiman, S.I., et al., Vestn. Mosk. Univ., Ser. 3, Fiz. Astron., 1987, vol. 28, no. 4, pp. 95–98.Google Scholar
  5. 5.
    Bucio, L., Cascales, C., Alonso, J.A., and Rasines, I., J. Phys.: Condens. Matter, 1996, vol. 8, pp. 2641–2653.Google Scholar
  6. 6.
    Drokina, T.V., Petrakovskii, G.A., Velikanov, D.A., and Molokeev, M.S., Fiz. Tverd. Tela, 2014, vol. 56, no. 6, pp. 1088–1092.Google Scholar
  7. 7.
    Shtin, S.V. and Lykasov, A.A., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2013, no. 5, pp. 12–16.Google Scholar
  8. 8.
    Becker, U.W. and Felsche, J., J. Less-Common Met., 1987, vol. 128, pp. 269–280.CrossRefGoogle Scholar
  9. 9.
    Denisova, L.T., Izotov, A.D., and Kargin, Yu.F., Dokl. Phys. Chem., 2017, vol. 477, part 1, pp. 205–207.CrossRefGoogle Scholar
  10. 10.
    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Neorg. Mater., 2017, vol. 53, no. 1, pp. 71–73.Google Scholar
  11. 11.
    Shannon, R.D., Acta Crystallogr. Sect. A, 1976, vol. 32, pp. 751–767.CrossRefGoogle Scholar
  12. 12.
    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Neorg. Mater., 2018, vol. 54, no. 2, pp. 193–196.Google Scholar
  13. 13.
    Leitner, J., Chuchvalec, P., Sedmidysky, D., et al., Thermochim. Acta, 2003, vol. 295, pp. 27–46.Google Scholar
  14. 14.
    Kumok, V.N., in Pryamye i obratnye zadachi khimi-cheskoi termodinamiki (Direct and Inverse Problems of Chemical Thermodynamics), Novosibirsk: Nauka, 1987, pp. 108–123.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. T. Denisova
    • 1
    Email author
  • A. D. Izotov
    • 2
  • Yu. F. Kargin
    • 3
  • L. A. Irtyugo
    • 1
  • V. V. Beletskii
    • 1
  • N. V. Belousova
    • 1
  • V. M. Denisov
    • 1
  1. 1.Institute of Nonferrous Metals and Materials Science, Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations