Advertisement

Doklady Chemistry

, Volume 487, Issue 2, pp 230–234 | Cite as

Pyrolysis of Derivatives of Technical Mixtures of Polychlorinated Biphenyls

  • T. V. Kulikova
  • A. V. MaiorovaEmail author
  • A. P. Safronov
  • T. I. Gorbunova
  • M. G. Pervova
  • K. Yu. Shunyaev
  • L. I. Leont’ev
CHEMICAL TECHNOLOGY
  • 2 Downloads

Abstract

The thermal stability and composition of the gas phase of the most common technical mixtures of polychlorinated biphenyls of the Sovol and Trikhlorbifenil brands have been studied by simultaneous thermal analysis and mass spectrometry in comparison with their derivatives synthesized by the reaction of these mixtures with sodium methoxide in a medium of dimethyl sulfoxide and methanol. It has been determined for the first time that derivatives of polychlorinated biphenyls are less thermally stable compounds in comparison with the initial substances and, in pyrolysis, undergo not only evaporation but also decomposition to the simplest volatile species. The thermal destruction of the derivatives requires lower energy consumption and is characterized by lower emissions of hazardous chemicals.

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 18–29–24126).

REFERENCES

  1. 1.
    Maisterenko, V.N. and Klyuev, N.A., Ekologo-analiticheskii monitoring stoikikh organicheskikh zagryaznitelei (Environmental and Analytical Monitoring of Persistent Pollutants), Moscow: BINOM, 2004.Google Scholar
  2. 2.
    Porta, M. and Zumeta, E., Environ. Med., 2002, vol. 59, pp. 651–652.CrossRefGoogle Scholar
  3. 3.
    Treger, Yu.A., Khim. Zh., 2013, no. 1, pp. 30–34.Google Scholar
  4. 4.
    Zanaveskin, L.N., Aver’yanov, V.A., and Treger, Yu.A., Usp. Khim., 1996, vol. 65, no. 7, pp. 667–675.CrossRefGoogle Scholar
  5. 5.
    Wu, B.-Z., Chen, H.-Y., Wang, S.-J., Wai, C.-M., Liao, W., and Chiu, K.-H., Chemosphere, 2012, vol. 88, no. 7, pp. 757–768.CrossRefGoogle Scholar
  6. 6.
    Gorbunova, T.I., Subbotina, J.O., Saloutin, V.I., and Chupakhin, O.N., J. Hazard. Mater., 2014, vol. 278, pp. 491–499.CrossRefGoogle Scholar
  7. 7.
    Plotnikova, K.A., Pervova, M.G., Gorbunova, T.I., Khaibulova, T.Sh., Boyarskii, V.P., Saloutin, V.I., and Chupakhin, O.N., Dokl. Chem., 2017, vol. 476, part 1, pp. 206–210.CrossRefGoogle Scholar
  8. 8.
    Plotnikova, K.A., Gorbunova, T.I., Pervova, M.G., Kulikova, T.V., Maiorova, A.V., Saloutin, V.I., and Chupakhin, O.N., Russ. J. Gen. Chem., 2017, vol. 87, no. 5, pp. 934–939.CrossRefGoogle Scholar
  9. 9.
    Kulikova, T.V., Maiorova, A.V., Shunyaev, K.Yu., Gorbunova, T.I., Saloutin, V.I., and Chupakhin, O.N., Russ. J. Gen. Chem., 2013, vol. 83, no. 5, pp. 893–900.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. V. Kulikova
    • 1
    • 2
  • A. V. Maiorova
    • 1
    • 2
    Email author
  • A. P. Safronov
    • 2
    • 4
  • T. I. Gorbunova
    • 3
  • M. G. Pervova
    • 3
  • K. Yu. Shunyaev
    • 1
    • 2
  • L. I. Leont’ev
    • 1
  1. 1.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  4. 4.Institute of Electrophysics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations