Doklady Chemistry

, Volume 487, Issue 2, pp 212–214 | Cite as

Ag-Selective Nanotubes Based on Bisthiacalix[4]arene with Ethylene Sulfide Bridges

  • A. A. MuravevEmail author
  • E. A. Trushina
  • A. T. Yakupov
  • S. E. Solovieva
  • I. S. Antipin


An approach to molecular nanotubes of a new type based on bisthiacalix[4]arene with ethylene sulfide bridges in cone stereoisomeric form has been suggested and implemented. This ligand has shown selective liquid-phase extraction of Ag+.



The authors are grateful to the Center of Collective Use of FRC KSC RAS for technical support of the studies.


The work was fulfilled in the framework of the State Assignment of FRC Kazan Scientific Center, RAS, and partially supported by the subsidies allocated to Kazan Federal University on the State support in the field of scientific activity (4.1493.2017/4.6 and 4.5151.2017/6.7).


  1. 1.
    Calixarenes and Beyond, Neri, P., Sessler, J.L., and Wang, M.-X., Eds., New York: Springer, 2016.Google Scholar
  2. 2.
    Kumar, R., Lee, Y.O., Bhalla, V., et al., Chem. Soc. Rev., 2014, vol. 43, pp. 4824–4870.CrossRefGoogle Scholar
  3. 3.
    Konovalov, A.I., Antipin, I.S., Burilov, V.A., et al., Russ. J. Org. Chem., 2018, vol. 54, pp. 157–371.CrossRefGoogle Scholar
  4. 4.
    Solovieva, S.E., Burilov, V.A., and Antipin, I.S., Macroheterocycles, 2017, vol. 10, pp. 134–146.CrossRefGoogle Scholar
  5. 5.
    Rambo, B.M., Kim, S.K., Kim, J.S., et al., Chem. Sci., 2010, vol. 1, pp. 716–722.CrossRefGoogle Scholar
  6. 6.
    Solovieva, S., Muravev, A., Zakirzyanov, R., et al., Macroheterocycles, 2012, vol. 5, pp. 17–22.CrossRefGoogle Scholar
  7. 7.
    Kumar, M., Bhalla, V., Dhir, A., and Babu, J.N., Dalton Trans., 2010, vol. 39, pp. 10116–10121.CrossRefGoogle Scholar
  8. 8.
    Schmitt, P., Beer, P.D., Drew, M.G.B., and Sheen, P.D., Angew. Chem., Int. Ed. Engl., 1997, vol. 36, pp. 1840–1842.CrossRefGoogle Scholar
  9. 9.
    Lee, J.Y., Lee, S.Y., Seo, J., et al., Inorg. Chem., 2007, vol. 46, pp. 6221–6223.CrossRefGoogle Scholar
  10. 10.
    Kim, J.-Y., Park, I.-H., Lee, J.Y., et al., Inorg. Chem., 2013, vol. 52, pp. 10176–10182.CrossRefGoogle Scholar
  11. 11.
    Park, I.-H., Kim, J.-Y., Kim, K., and Lee, S.S., Cryst. Growth Des., 2014, vol. 14, pp. 6012–6023.CrossRefGoogle Scholar
  12. 12.
    Muravev, A., Galieva, F., Bazanova, O., et al., Supramol. Chem., 2016, vol. 28, pp. 589–600.CrossRefGoogle Scholar
  13. 13.
    Demirel, A., Dogan, A., Akkus, G., et al., Electroanalysis, 2006, vol. 18, pp. 1019–1027.CrossRefGoogle Scholar
  14. 14.
    Smirnov, I.V., Stepanova, E.S., Tyupina, M.Yu., et al., Radiochemistry, 2016, vol. 58, pp. 381–388.CrossRefGoogle Scholar
  15. 15.
    Smirnov, I.V., Stepanova, E.S., Tyupina, M.Yu., et al., Macroheterocycles, 2017, vol. 10, pp. 196–202.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Muravev
    • 1
    Email author
  • E. A. Trushina
    • 2
  • A. T. Yakupov
    • 3
  • S. E. Solovieva
    • 1
  • I. S. Antipin
    • 3
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center Kazan Scientific Center, Russian Academy of SciencesKazanRussia
  2. 2.Ural Federal University Named after the First President of Russia B.N. YeltsinYekaterinburgRussia
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations