Doklady Chemistry

, Volume 487, Issue 2, pp 218–220 | Cite as

A New Method for Synthesis of Fine Crystalline Magnesium Aluminate Spinel

  • G. P. PanasyukEmail author
  • I. V. Kozerozhets
  • M. N. Danchevskaya
  • Yu. D. Ivakin
  • G. P. Murav’eva
  • A. D. Izotov


A new method for synthesis of high-purity fine crystalline magnesium aluminate spinel (MgAl2O4) has been proposed by treating a mixture of finely divided MgO and aluminum hydroxide (Al(OH)3) or oxyhydroxide (AlOOH) with aqueous fluid under supercritical conditions (T = 380–400°С, Р\(_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}\) = 22.8–23.0 MPa). It has been demonstrated that the formation of the magnesium aluminate spinel structure occurs by a solid state mechanism. The new method of synthesis makes it possible to control the size (from 20 nm to 5 µm) and shape (spherical, lamellar, or bipyramidal) of the synthesized magnesium aluminate spinel (MgAl2O4) by varying the reaction conditions.



The work was fulfilled in the framework of the State Assignment of the Institute of General and Inorganic Chemistry, RAS, in the area of basic research and in the framework of the State Assignment of Moscow State University no. AAAA-A16-116092810057-8.


  1. 1.
    Ganesh, J.A., Int. Mater. Rev., 2013, vol. 115, no. 16, pp. 63–112.CrossRefGoogle Scholar
  2. 2.
    Karakchiev, L.G., Avvakumov, E.G., Vinokurova, O.B., and Gusev, A.A., Zh. Neorg. Khim., 2005, vol. 50, no. 10, pp. 1612–1616.Google Scholar
  3. 3.
    Cansell, F. and Aymonier, C., J. Supercrit. Fluids, 2009, vol. 47, no. 3, pp. 508–516.CrossRefGoogle Scholar
  4. 4.
    Levy, C., Watanabe, M., Aizawa, Y., and Inomata, H., J. Appl. Ceram. Technol., 2006, vol. 3, no. 5, pp. 337–344.CrossRefGoogle Scholar
  5. 5.
    Zalepugin, D.Yu., Til’kunova, N.A., Chernyshova, I.V., and Polyakov, V.S., Sverkhkrit. Flyuidy: Teor. Prakt., 2006, vol. 1, no. 1, pp. 27–51.Google Scholar
  6. 6.
    Danchevskaya, M.N., Ivakin, YuD., Torbin, S.N., Ovchinnikova, O.G., and Muravieva, G.P., ISHA Newsletter, 2008, vol. 3, no. 1, pp. 12–21.Google Scholar
  7. 7.
    Danchevskaya, M.N., Ivakin, YuD., Muravieva, G.P., and Luchkov, I.V., J. Phys.: Conf. Ser., 2008, vol. 121, no. 082001, pp. 1–5.Google Scholar
  8. 8.
    Danchevskaya, M.N., Martynova, L.F., Torbin, S.N., and Muravieva, G.P., High Pressure Res., 2001, vol. 20, pp. 109–119.CrossRefGoogle Scholar
  9. 9.
    Panasyuk, G.P., Azarova, L.A., Belan, V.N., Pershikov, E.A., Semenov, S.A., Danchevskaya, M.N., Voroshilov, I.L., and Kozerozhets, I.V., Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 903–910.CrossRefGoogle Scholar
  10. 10.
    Danchevskaya, M.N., Ivakin, YuD., Torbin, S.N., and Muravieva, G.P., J. Supercrit. Fluids, 2008, vol. 46, pp. 358–364.CrossRefGoogle Scholar
  11. 11.
    Danchevskaya, M.N., Ivakin, Yu.D., Muravieva, G.P., and Torbin, S.N., 14th European Meeting on Supercritical Fluids, Marseille (France), 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. P. Panasyuk
    • 1
    Email author
  • I. V. Kozerozhets
    • 1
  • M. N. Danchevskaya
    • 2
  • Yu. D. Ivakin
    • 2
  • G. P. Murav’eva
    • 2
  • A. D. Izotov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations