Doklady Chemistry

, Volume 486, Issue 1, pp 137–140 | Cite as

Limited Solid Solution Li(Ni0.33Mn0.33Co0.33)1 – xFexO2 with an α-NaFeO2 Structure

  • M. N. SmirnovaEmail author
  • M. A. Kop’eva
  • G. D. Nipan
  • G. E. Nikiforova
  • Yu. M. Volfkovich
  • T. L. Kulova
  • N. F. Nikol’skaya


Compositions Li(Ni0.33Mn0.33Co0.33)1 – xFexO2 (0 ≤ х ≤ 1) of the LiNiO2–LiMnO2–LiCoO2–LiFeO2 concentration tetrahedron have been studied. Samples were synthesized by gel combustion with starch, which afforded, for the first time, the impurity-free stable solid solution LiNi0.2Mn0.2Co0.2Fe0.4O2 with an α-NaFeO2 layered structure used as a cathode matrix of lithium-ion batteries. Electrochemical testing of homogeneous LiNi0.2Mn0.2Co0.2Fe0.4O2 and the LiNi0.3Mn0.3Co0.3Fe0.1O2 sample with the lowest iron content has been carried out. The results expand the understanding of the possibility of saturation with iron of Li(Ni,Mn,Co)O2 with an α-NaFeO2 structure and indicate the feasibility of further studying the homogeneity volume and properties of the Li(Ni,Mn,Co,Fe)O2 solid solution.



The work was performed in the framework of the State assignment of the Institute of General and Inorganic Chemistry and Institute of Physical Chemistry and Electrochemistry, RAS, in the field of basic research.


  1. 1.
    Kulova, T.L. and Skundin, A.M., Elektrokhimiya, 2016, vol. 52, no. 6, pp. 563–588.Google Scholar
  2. 2.
    Nipan, G.D. and Klyndyuk, A.I., Neorg. Mater., 2019, vol. 55, no. 2, pp. 141–148.CrossRefGoogle Scholar
  3. 3.
    Meng, Y.S., Wu, Y.W., Hwang, B.J., et al., J. Electrochem. Soc., 2004, vol. 151, no. 8, pp. A1134–A1140.CrossRefGoogle Scholar
  4. 4.
    El Mofid, W., Synthesis and characterization of novel cathode material with improved specific capacity and safety for lithium ion batteries, PhD Thesis, Techniscen Universitat Ilmenau, 2016.Google Scholar
  5. 5.
    Li, J., Chen, J., Li, J., et al., Int. J. Electrochem. Sci., 2015, vol. 10, pp. 838–847.Google Scholar
  6. 6.
    Hirayama, M., Tomita, H., Kubota, K., et al., Mater. Res. Bull., 2012, vol. 47, no. 1, pp. 79–84.CrossRefGoogle Scholar
  7. 7.
    Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, no. 7, p. 642.CrossRefGoogle Scholar
  8. 8.
    Smirnova, M.E., Kop’eva, M.A., and Beresnev, E.N., Zh. Neorg. Khim., 2018, vol. 63, no. №10, pp. 1257–1261.Google Scholar
  9. 9.
    Safronov, D.V., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Neorg. Mater., 2012, vol. 48, no. 5, pp. 598–605.Google Scholar
  10. 10.
    Brown, C.R., McCalla, E., Watson, C., and Dahn, J.R., ASC Comb. Sci., 2015, vol. 17, pp. 381–391.CrossRefGoogle Scholar
  11. 11.
    Wang, Q., Tian, N., Xu, K., Han, L., and You, C., J. Alloys Comp., 2016, vol. 686, pp. 267–272.CrossRefGoogle Scholar
  12. 12.
    Al-Shroofy, M., Zhang, Q., Xu, J., Chen, T., and Cheng, Y.-T., J. Power Sources, 2017, vol. 352, pp. 187–193.CrossRefGoogle Scholar
  13. 13.
    Li, X., Wu, D., Zhou, Y.-N., et al., Electrochem. Commun., 2014, vol. 49, pp. 51–54.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Smirnova
    • 1
    Email author
  • M. A. Kop’eva
    • 1
  • G. D. Nipan
    • 1
  • G. E. Nikiforova
    • 1
  • Yu. M. Volfkovich
    • 2
  • T. L. Kulova
    • 2
  • N. F. Nikol’skaya
    • 2
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations