Advertisement

Doklady Chemistry

, Volume 484, Issue 1, pp 12–15 | Cite as

Electroreduction of the Bromate Anion on a Microelectrode in Excess Acid: Solution of the Inverse Kinetic Problem

  • O. A. Goncharova
  • A. T. Glazkov
  • K. V. Lizgina
  • A. A. Piryazev
  • S. L. Koryakin
  • D. V. KonevEmail author
  • M. A. VorotyntsevEmail author
  • V. B. Mintsev
CHEMISTRY
  • 39 Downloads

Abstract

Acidic aqueous solutions of bromic acid salts (bromates) are promising electrolytes for redox flow batteries due to their record high power capacity and the rate of electrode reactions proceeding in the autocatalytic regime. The paper gives a comparison of the results of mathematical modeling and experimental measurements of steady-state currents of bromate anion electroreduction in sulfuric acid medium on microelectrodes of various radii. An algorithm of solving the inverse problem suitable for determination of the key transport and kinetic process parameters was proposed and tested.

Notes

ACKNOWLEDGMENTS

The study was supported by the Ministry of Education and Science of the Russian Federation (Grant Agreement of September 29, 2016, No. 14.607.21.0143, UIN:RFMEFI60716X0143).

REFERENCES

  1. 1.
    Ehsandul, K., Pawan, K., Sandeep, K., Adedeji, A.A., and Ki-Hyun, K., Renew. Sust. Energ. Rev., 2018, vol. 82, p. 894.CrossRefGoogle Scholar
  2. 2.
    Cho, K.T., Tucker, M.C., and Weber, A.Z., Energ. Tech., 2016, vol. 4, p. 655.CrossRefGoogle Scholar
  3. 3.
    Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., J. Solid State Electrochem., 2015, vol. 19, p. 2711.CrossRefGoogle Scholar
  4. 4.
    Vorotyntsev, M.A., Antipov, A.E., and Konev, D.V., Pure Appl. Chem., 2017, vol. 89. doi  https://doi.org/10.1515/pac-2017-0306
  5. 5.
    Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V., Electrochim. Acta, 2015, vol. 173, p. 779.CrossRefGoogle Scholar
  6. 6.
    Antipov, A.E. and Vorotyntsev, M.A., Russ. J. Electrochem., 2016, vol. 52, p. 925.CrossRefGoogle Scholar
  7. 7.
    Antipov, A.E., Vorotyntsev, M.A., Tolmachev, Y.V., et al., Dokl. Phys. Chem., 2016, vol. 468, p. 141.CrossRefGoogle Scholar
  8. 8.
    Vorotyntsev, M.A. and Antipov, A.E., Electrochim. Acta, 2017, vol. 258, p. 544.CrossRefGoogle Scholar
  9. 9.
    Modestov, A.D., Konev, D.V., Antipov, A.E., Pet-rov,  M.M., Pichugov, R.D., and Vorotyntsev, M.A., Electrochim. Acta, 2018, vol. 259, p. 655.CrossRefGoogle Scholar
  10. 10.
    Konev, D.V., Antipov, A.E., Petrov, M.M., Shamraeva, M.A., and Vorotyntsev, M.A., Electrochem. Commun., 2018, vol. 86, p. 76.CrossRefGoogle Scholar
  11. 11.
    Bruno, T.J. and Lide, D.R., CRC Handbook of Chemistry and Physics, 97th ed., Boca Raton: CRC Press, 2015.Google Scholar
  12. 12.
    Cussler, E.L., Diffusion: Mass Transfer in Fluid Systems, 2nd ed., New York: Cambridge Univ. Press, 1997.Google Scholar
  13. 13.
    Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., and Blowes, D.W., Environ. Sci. Technol., 2000, vol. 34, no. 2, pp. 254–258.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Goncharova
    • 1
    • 2
  • A. T. Glazkov
    • 1
  • K. V. Lizgina
    • 2
  • A. A. Piryazev
    • 2
  • S. L. Koryakin
    • 2
  • D. V. Konev
    • 3
    Email author
  • M. A. Vorotyntsev
    • 1
    • 2
    • 3
    • 4
    Email author
  • V. B. Mintsev
    • 2
    • 3
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2. Moscow State UniversityMoscowRussia
  3. 3.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  4. 4.Institute of Molecular Chemistry, University of BurgundyDijonFrance

Personalised recommendations