Advertisement

Doklady Biological Sciences

, Volume 488, Issue 1, pp 133–135 | Cite as

Combined Irradiation by Gamma Rays and Carbon Nuclei Increases the C/EBP-β LIP Isoform Content in the Pituitary Gland of Rats

  • I. P. Anokhina
  • P. K. Anokhin
  • V. S. KokhanEmail author
PHYSIOLOGY
  • 7 Downloads

Abstract

C/EBP-β, a basic leucine zipper transcription factor, has important roles in the regulation of the body immune and inflammatory responses. Wistar rats subjected to combined irradiation were characterized by an increase in the content of the C/EBP-β LIP isoform in the pituitary gland. The obtained data indicate that moderate doses of ionizing radiation to initiate the endoplasmic reticulum stress response and are likely to initiate C/EBP-β-mediated cell death according to the apoptotic scenario. This study also confirms the earlier hypothesis about the alterations of the hypothalamic–pituitary–adrenocortical axis in response to moderate doses of ionizing radiation.

Notes

FUNDING

This study was supported by the Russian Science Foundation, project no. 17-74-10079).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Kokhan, V.S., Matveeva, M.I., Mukhametov, A., and Shtemberg, A.S., Neurosc. Biobehav. Rev., 2016, vol. 71, pp. 621–632.CrossRefGoogle Scholar
  2. 2.
    Kokhan, V.S., Shakhbazian, E.V., and Markova N.A., Behav. Brain Res., 2019, vol. 362, pp. 311–318.CrossRefGoogle Scholar
  3. 3.
    ElSayed, S.A. and Bhimji, S.S., Physiology, Pituitary Gland, Treasure Island (FL): StatPearls, 2019.Google Scholar
  4. 4.
    Musumeci, G., Castorina, S., Castrogiovanni, P., Loreto, C., Leonardi, R., Aiello, F.C., Magro, G., and Imbesi, R., Acta Histochem., 2015, vol. 117, no. 4–5, pp. 355–366.CrossRefGoogle Scholar
  5. 5.
    Li, Y., Bevilacqua, E., Chiribau, C.B., Majumder, M., Wang, C., Croniger, C.M., Snider, M.D., Johnson, P.F., and Hatzoglou, M., J. Biol. Chem., 2008, vol. 283, no. 33, pp. 22 443–22 456.Google Scholar
  6. 6.
    Calkhoven, C.F., Muller, C., and Leutz A., Genes Dev., 2000, vol. 14, no. 15, pp. 1920–1932.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wethmar, K., Smink, J.J., and Leutz, A., Bioessays, 2010, vol. 32, no. 10, pp. 885–893.CrossRefGoogle Scholar
  8. 8.
    Timchenko, N., Wang, A.G. L., and Timchenko, L.T., J. Biol. Chem., 2005, vol. 280, no. 21, pp. 20 549–20 557.Google Scholar
  9. 9.
    Zhang, K. and Kaufman, R.J., Neurology, 2006, vol. 66, no. 2 suppl 1, pp. S102–S109.CrossRefGoogle Scholar
  10. 10.
    Fan, Y., Liu, Z., Weinstein, P.R., Fike, J.R. and Liu, J., Eur. J. Neurosci., 2007, vol. 25, no. 1, pp. 38–46.Google Scholar
  11. 11.
    Haddad, L., Evans, J.C., Gharani, N., Robertson, C., Rush, K., Wiltshire, S., Frayling, T.M., Wilkin, T.J., Demaine, A., Millward, A., Hattersley, A.T., Conway, G., Cox, N.J., Bell, G.I., Franks, S. and McCarthy, M.I., J. Clin. Endocrinol. Metab., 2002, vol. 87, no. 6, pp. 2606–2610.Google Scholar
  12. 12.
    Sun, H., Sheveleva, E., Xu, B., Inoue, H., Bowden, T.G., and Chen, Q.M., Am. J. Physiol. Cell. Physiol., 2008, vol. 295, no. 4, pp. C915–C922.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. P. Anokhina
    • 1
  • P. K. Anokhin
    • 1
  • V. S. Kokhan
    • 2
    Email author
  1. 1.Serbsky Federal Medical Research Centre for Psychiatry and NarcologyMoscowRussia
  2. 2.Institute of Biomedical Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations