Doklady Biological Sciences

, Volume 485, Issue 1, pp 44–46 | Cite as

Trophosome in the Vestimentiferan Tubeworm Ridgeia piscesae Jones 1985 (Annelida, Siboglinidae) Develops from Cells of the Coelomic Lining

  • V. V. Malakhov
  • M. M. GantsevichEmail author


The paper reports the study of the anatomy of early juvenile individuals of the vestimentiferan tubeworm Ridgeia piscesae (Annelida, Siboglinidae). Adult vestimentiferans lack the digestive tract but have the trophosome, whose cells are inhabited by chemoautotrophic bacteria. It has been shown, in 280- to 300-µm early juvenile individuals, that the trophosome develops from cells of the coelomic lining on the gut surface and on the lateral body walls. The observed proto-trophosome structure suggests that the bacteria are first captured by the coelomic cells of the body wall and then transferred to the coelomic cells located on the gut surface.



We are grateful to S.V. Galkin (Shirshov Institute of Oceanology, Russian Academy of Sciences), who kindly provided us with the collection of vestimentiferans.

The study was supported by the Russian Science Foundation, project no. 18-14-00141.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Hilario, A., Capa, M., Dahlgren, T.G., Halanych, K.M., Little, C.T.S., Thornhill, D.J., Verna, C., and Glover, A.G., PLoS ONE, 2011, vol. 6, no. 2, pp. 1–13.CrossRefGoogle Scholar
  2. 2.
    Karaseva, N.P., Rimskaya-Korsakova, N.N., Galkin, S.V., and Malakhov, V.V., Zool. Zh., 2016, vol. 95, no. 6, pp. 624–659.Google Scholar
  3. 3.
    Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannasch, H.W., and Waterbury, J.B., Science, 1981, vol. 213, no. 4505, pp. 340–342.CrossRefGoogle Scholar
  4. 4.
    Cavanaugh, C.M., Nature, 1983, vol. 302, no. 3, pp. 58–61.CrossRefGoogle Scholar
  5. 5.
    Gardiner, S.L. and Jones, M.L., in Microscopic Anatomy of Invertebrates, vol. 12: Onychophora, Chilopoda, and Lesser Protostomata, Harrison, F.W., Ed., Wiley-Liss., 1993, pp. 371–460.Google Scholar
  6. 6.
    Southward, E.S., J. Mar. Biol. Assoc. U.K., 1988, vol. 68, pp. 465–487.CrossRefGoogle Scholar
  7. 7.
    Jones, M.L. and Gardiner, S.L., Proc. Biol. Soc. Wash., 1988, vol. 101, pp. 423–433.Google Scholar
  8. 8.
    Nussbaumer, A.D., Fisher, C.R., and Bright, M., Nature, 2006, vol. 441, pp. 345–348.CrossRefGoogle Scholar
  9. 9.
    Bright, M., Eichinger, I., and Salvini-Plawen, L., Org. Divers. Evol., 2013, vol. 13, pp. 163–188.CrossRefGoogle Scholar
  10. 10.
    van der Land, J. and Norrevang, A., K. Danske Vidensk. Selsk. Skr., 1977, vol. 21, no. 3, pp. 1–102.Google Scholar
  11. 11.
    Bright, M. and Sorgo, A., Inverteb. Biol., 2003, vol. 122, pp. 347–368.CrossRefGoogle Scholar
  12. 12.
    Karaseva, N.P., Malakhov, V.V., and Galkin, S.V., Biol. Morya, 2012, vol. 38, no. 2, pp. 112–129.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations