Advertisement

Doklady Biological Sciences

, Volume 485, Issue 1, pp 30–32 | Cite as

Physical Fatigue and Morphofunctional State of the Myocardium in Experimental Chronic Stress

  • M. V. KondashevskayaEmail author
  • V. E. Tseylikman
  • M. V. Komelkova
  • M. S. Lapshin
  • A. P. Sarapultsev
  • S. S. Lazuko
  • O. P. Kuzhel
  • E. B. Manukhina
  • H. F. Downey
  • M. V. Chereshneva
  • V. A. Chereshnev
PHYSIOLOGY
  • 5 Downloads

Abstract

The relationship between the development of skeletal muscle fatigue of a specific type in male Wistar rats and morphofunctional alterations in the myocardium in the posttraumatic stress disorder (PTSD) model has been investigated for the first time. The aggravation of oxidative stress in the cardiomyocytes and the related transformation of the cell structural components and the depletion of energy reserves in PTSD has been identified as one of the main factors that accelerate the onset of musculoskeletal fatigue.

Notes

ACKNOWLEDGMENTS

This study was performed in the framework of the basic part of State Contract no. 17.7255.2017/8.9 with the Ministry of Education and Science of the Russian Federation and the State Contract with the Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences (topic no. AAAA-A18-118020590108-7).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All experimental procedures were approved by the local ethical committee and implemented according to the EC Declaration on handling laboratory animals (2010).

REFERENCES

  1. 1.
    Edmondson, D. and von Känel, R., Lancet Psychiatry, 2017, vol. 4, pp. 320–329.CrossRefGoogle Scholar
  2. 2.
    Pitman, R.K., Rasmusson, A.M., Koenen, K.C., et al., Nat. Rev. Neurosci., 2012, vol. 13, pp. 769–787.CrossRefGoogle Scholar
  3. 3.
    Koenen, K.C., Sumner, J.A., Gilsanz, P., et al., Psychol. Med., 2017, vol. 47, pp. 209–225.CrossRefGoogle Scholar
  4. 4.
    Oddone, A.E., Dennis, P.A., Calhoun, P.S., et al., Psychol. Trauma, 2015, vol. 7, pp. 229–233.CrossRefGoogle Scholar
  5. 5.
    Ebner, K. and Singewald, N., Curr. Opin. Behav. Sci., 2017, vol. 14, pp. 54–64.CrossRefGoogle Scholar
  6. 6.
    Zoladz, P.R., Park, C.R., Fleshner, M., et al., Physiol. Behav., 2015, vol. 147, pp. 183–192.CrossRefGoogle Scholar
  7. 7.
    Sapolsky, R.M., Romero, L.M., and Munck, A.U., Endocr. Rev., 2000, vol. 21, pp. 55–89.Google Scholar
  8. 8.
    Lazuko, S.S., Kuzhel, O.P., Belyaeva, L.E., Manukhina, E.B., Fred Downey, H., Tseilikman, O.B., Komelkova, M.V., and Tseilikman, V.E., Cell. Mol. Neurobiol., 2018, vol. 38, pp. 209–217.CrossRefGoogle Scholar
  9. 9.
    Klinicheskaya laboratornaya analitika, vol. 2: Chastnye analiticheskie tekhnologii v klinicheskoi laboratorii (Clinical Laboratory Analytics, vol. 2: Specific Analytical Technologies in Clinical Laboratory), Men’shi-kov, V.V., Ed., Moscow: Labinform-RAMLD, 1999.Google Scholar
  10. 10.
    Volchegorskii, I.A., Dolgushin, I.I., Kolesnikov, O.L., and Tseilikman, V.E., Eksperimental’noe modelirovanie i laboratornaya otsenka adaptatsionnykh reaktsii organizma (Experimental Simulation and Laboratory Estimation of Adaptive Responses of the Body), Che-lyabinsk: Chelyab. Gos. Ped. Univ., 2000.Google Scholar
  11. 11.
    Dubinina, E.E., Burmistrov, S.O., Khodov, D.A., and Porotov, I.G., Vopr. Med. Khimii, 1995, vol. 41, no. 1, pp. 24–26.Google Scholar
  12. 12.
    Chandramouli, C., Varma, U., Stevens, E.M., et al., Clin. Exp. Pharmacol. Physiol., 2015, vol. 42, pp. 415–425.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. V. Kondashevskaya
    • 1
    Email author
  • V. E. Tseylikman
    • 2
  • M. V. Komelkova
    • 2
  • M. S. Lapshin
    • 2
  • A. P. Sarapultsev
    • 3
    • 4
  • S. S. Lazuko
    • 5
  • O. P. Kuzhel
    • 5
  • E. B. Manukhina
    • 2
    • 6
    • 7
  • H. F. Downey
    • 2
    • 7
  • M. V. Chereshneva
    • 3
  • V. A. Chereshnev
    • 3
    • 4
  1. 1.Research Institute of Human MorphologyMoscowRussia
  2. 2.South Ural State UniversityChelyabinskRussia
  3. 3.Institute of Immunology and PhysiologyYekaterinburgRussia
  4. 4.Yeltsin Federal UniversityYekaterinburgRussia
  5. 5.Vitebsk State Medical UniversityVitebskBelarus
  6. 6.Institute of General Pathology and PathophysiologyMoscowRussia
  7. 7.University of North Texas Health Science CenterFort WorthUnited States of America

Personalised recommendations