Advertisement

Differential Equations

, Volume 55, Issue 10, pp 1304–1310 | Cite as

Application of Fractional Powers of a Singular Schrödinger Operator to the Study of a Differential Equation in a Banach Space

  • T. N. AlikulovEmail author
Partial Differential Equations
  • 13 Downloads

Abstract

We study the application of a singular Schrödinger operator to studying a linear second-order differential equation in a Banach space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Il’in, V.A., Fractional-order kernels, Mat. Sb., 1957, vol. 41, no. 4, pp. 459–480.MathSciNetGoogle Scholar
  2. 2.
    Alimov, Sh.A., Fractional powers of elliptic operators and an isomorphism of classes of differentiable functions, Differ. Uravn., 1972, vol. 8, no. 9, pp. 1609–1626.MathSciNetGoogle Scholar
  3. 3.
    Kostin, V.A. and Nebol’sina, M.N., Well-posedness of boundary value problems for a second-order equation, Dokl. Math., 2009, vol. 80, no. 2, pp. 650–652.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Khalmukhamedov, A.R., Negative powers of a singular Schrödinger operator and convergence of spectral decompositions, Math. Notes, 1996, vol. 59, no. 3, pp. 303–309.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Krasnosel’skii, M.A., Zabreiko, P.P., Pustyl’nik, P.E., and Sobolevskii, P.E., Integral’nye operatory v prostranstvakh summiruemykh funktsii (Integral Operators in Spaces of Integrable Functions), Moscow: Nauka, 1966.Google Scholar
  6. 6.
    Khalmukhamedov, A.R. and Alikulov, T.N., On imaginary powers of the Schrödinger operator in a Banach space with potential singular on manifolds, Uzb. Mat. Zh., 2007, no. 3, pp. 110–119.Google Scholar
  7. 7.
    Mikhlin, S.G., Mnogomernye singulyarnye integraly i integral’nye uravneniya (Multidimensional Singular Integrals and Integral Equations), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1962.Google Scholar
  8. 8.
    Alimov, Sh.A. and Khalmukhamedov, A.R., Estimates of the spectral function of the Schröodinger operator with potential satisfying the Kato condition, Vestn. Nats. Univ. Uzb., 2005, no. 3, pp. 46–50.Google Scholar
  9. 9.
    Nikol’skii, S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya (Approximation of Functions of Several Variables and Embedding Theorems), Moscow: Nauka, 1977.Google Scholar
  10. 10.
    Mikhlin, S.G., Lineinye uravneniya v chastnykh proizvodnykh (Linear Partial Differential Equations), Moscow: Vyssh. Shkola, 1977.Google Scholar
  11. 11.
    Zygmund, A., Trigonometric Series, Vol. 1, Cambridge: Cambridge Univ., 1959. Translated under the title Trigonometricheskie ryady, Moscow: Mir, 1965.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Mirzo Ulugbek National University of UzbekistanTashkentUzbekistan

Personalised recommendations