Advertisement

Differential Equations

, Volume 55, Issue 8, pp 1017–1036 | Cite as

Invariants and Symmetries of Second-Order Ordinary Differential Equations of Nonprojective Type

  • Yu. Yu. BagderinaEmail author
Ordinary Differential Equations
  • 2 Downloads

Abstract

The equivalence problem for second-order equations with respect to point changes of variables is solved. Equations whose right-hand side is not a cubic polynomial in the first derivative are considered. A basis of differential invariants of these equations in both main and degenerate cases is constructed, as well as operators of invariant differentiation and “trivial” relations that hold for the invariants of any equation. The use of the invariants of an equation in constructing its integrals, symmetries, and representation in the form of Euler–Lagrange equations is discussed. A generalization of the derived formulas to the calculation of invariants of equations unsolved for the highest derivative is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tresse, A., Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre y″ = ω(x, y, y′), Preisschriften der fürstlichen Jablonowski’schen Gesellschaft, Leipzig, 1896, no. 32.Google Scholar
  2. 2.
    Kruglikov, B., Point classification of second order ODEs: Tresse classification revisited and beyond, in Diff. Equat.: Geom. Symmetries Integrability. Abel Symp. 2008. Kruglikov, B. et al., Eds., Berlin, 2009, vol. 5, pp. 199–221.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fels, M.E., The equivalence problem for systems of second-order ordinary differential equations, Proc. London Math. Soc., 1995, vol. 71, no. 3, pp. 221–240.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Liouville, R., Sur les invariants de certaines équations différentielles et sur leurs applications, J. ´ Ecole Polytech., 1889, vol. 59, pp. 7–76.zbMATHGoogle Scholar
  5. 5.
    Tresse, A., Sur les invariants différentiels des groupes continus de transformations, Acta Math., 1894, vol. 18, no. 1, pp. 1–88.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cartan, É., Sur les variétés à connexion projective, Bull. Soc. Math. France, 1924, vol. 52, pp. 205–241.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Thomsen, G., Über die topologischen Invarianten der Differentialgleichung y″ = f(x, y)y′ 3 +g(x, y)y′ 2+ h(x, y)y′ + k(x, y), Abh. Math. Semin. Hamb. Univ., 1929, vol. 7, no. 1, pp. 301–328.CrossRefzbMATHGoogle Scholar
  8. 8.
    Sharipov, R.A., Effective procedure of point classification for the equations y″ = P +3Qy′+3Ry′ 2+Sy′ 3, Preprint arXiv: math.DG/9802027, 1998.Google Scholar
  9. 9.
    Yumaguzhin, V.A., Differential invariants of second order ODEs. I, Acta Appl. Math., 2010, vol. 109, pp. 283–313.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Morozov, O.I., The point equivalence problem for ordinary second order differential equations. II, Nauchn. Vestn. Mosk. Gos. Tekhn. Univ. Grazhd. Aviats., 2010, no. 157, pp. 98–104.Google Scholar
  11. 11.
    Bagderina, Yu.Yu., Invariants of a second-order differential equation, J. Phys. A Math. Theor., 2013, vol. 46, p. 295201.Google Scholar
  12. 12.
    Bryant, R., Dunajski, M., and Eastwood, M., Metrisability of two-dimensional projective structures, J. Diff. Geom., 2009, vol. 83, pp. 465–499.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Morozov, O.I., The point equivalence problem for second order ordinary differential equations. I, Nauchn. Vestn. Mosk. Gos. Tekhn. Univ. Grazhd. Aviats., 2010, no. 157, pp. 92–97.Google Scholar
  14. 14.
    Bagderina, Yu.Yu., Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals, J. Phys. A Math. Theor., 2016, vol. 9, pp. 155–202.zbMATHGoogle Scholar
  15. 15.
    Lie, S., über Differentialinvarianten, Math. Ann., 1884, vol. 24, no. 4, pp. 537–578.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bagderina, Yu.Yu., Equivalence of ordinary differential equations y″ = R(x, y)y′ 2+2Q(x, y)y′+P(x, y), Differ. Equations, 2007}, vol. 3, no. 5, pp. 595–604.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ovsyannikov, L.V., Gruppovoi analiz differentsial’nykh uravnenii (Group Analysis of Differential Equations), Moscow: Nauka, 1978.Google Scholar
  18. 18.
    Lie, S. and Scheffers, G., Geometrie der Berührungstransformationen, Leipzig, 1896.Google Scholar
  19. 19.
    Olver, P., Prilozheniya grupp Li k differentsial’nym uravneniyam (Applications of Lie Groups to Differential Equations), Moscow: Mir, 1989. [Russian translation of Olver, P.J., Applications of Lie Groups to Differential Equations, New York–Berlin–Heidelberg–Tokyo: Springer-Verlag, 1986.]zbMATHGoogle Scholar
  20. 20.
    Zaitsev, V.F. and Polyanin, A.D., Spravochnik po obyknovennym differentsial’nym uravneniyam (Handbook of Ordinary Differential Equations), Moscow: Fizmatlit, 2001.zbMATHGoogle Scholar
  21. 21.
    Bagderina, Yu.Yu., Properties of duality and symmetry of second-order ODE, Tr. Mat. Tsentra im. N.I. Lobachevskogo, Kazan, 2018, vol. 56, pp. 33–38.Google Scholar
  22. 22.
    Koppisch, A., Zur Invariantentheorie der gew¨ohnlichen Differentialgleichung zweiter Ordnung, Dissertation der philosophischen Doktorwürde, Leipzig, 1905.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Mathematics, Ufa Federal Research CenterRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations