Differential Equations

, Volume 55, Issue 7, pp 894–904 | Cite as

Numerical Model of Compression Plasma Flows in Channels under a Longitudinal Magnetic Field

  • K. V. BrushlinskiiEmail author
  • E. V. StepinEmail author
Numerical Methods


We consider a mathematical model of plasma flows in nozzle channels formed by two coaxial electrodes. The acceleration of plasma in an azimuthal magnetic field is accompanied by its compression and heating in the compression zone at the channel axis past the tip of the shorter central electrode. The mathematical apparatus of the model is based on numerically solving two-dimensional MHD problems using the Zalesak flux-corrected transport (Z-FCT) scheme. In the computations, we study the dependence of the compression phenomenon and its quantitative characteristics on the channel geometry, the problem parameters, and the additional longitudinal magnetic field present in the channel.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morozov, A.I., The acceleration of a plasma by a magnetic field, J. Exp. Theor. Phys., 1957, vol. 5, no. 2, pp. 215–220.Google Scholar
  2. 2.
    Artsimovich, L.A., Luk’yanov, S.Yu., Podgornyi, I.M., and Chuvatin, S.A., Electrodynamic acceleration of a plasma by a magnetic field, J. Exp. Theor. Phys., 1958, vol. 6, no. 1, pp. 1–5.Google Scholar
  3. 3.
    Morozov, A.I. and Solov’ev, L.S., Steady-state plasma flow in a magnetic field, Rev. Plasma Phys., Leontovich, M.A., Ed., 1980, vol. 8, pp. 1–104.Google Scholar
  4. 4.
    Brushlinskii, K.V. and Morozov, A.I., Calculation of two-dimensional plasma flows in channels, Rev. Plasma Phys., Leontovich, M.A., Ed., 1980, vol. 8, pp. 105–197.Google Scholar
  5. 5.
    Morozov, A.I., Fizicheskie osnovy kosmicheskikh elektroreaktivnykh dvigatelei (Physical Basics of Space Electrojet Engines), Moscow: Atomizdat, 1978.Google Scholar
  6. 6.
    Morozov, A.I., Vvedenie v plazmodinamiku, Moscow: Fizmatlit, 2008, 2nd ed. Engl. transl.: Introduction to Plasma Dynamics, Boca Raton: CRC Press, 2012.Google Scholar
  7. 7.
    Brushlinskii, K.V., Matematicheskie i vychislitel’nye zadachi magnitnoi gazodinamiki (Mathematical and Computational Problems of Magnetic Gas Dynamics), Moscow: Binom, 2009.Google Scholar
  8. 8.
    Morozov, A.I., Steady-state plasma accelerators and their possible applications in thermonuclear research, Nucl. Fusion, 1969, Special Suppl., pp. 111–119.Google Scholar
  9. 9.
    Morozov, A.I., Thermonuclear systems with dense plasma, Vestn. Akad. Nauk SSSR, 1969, no. 6, pp. 28–36.Google Scholar
  10. 10.
    Astashinskii, V.M., Bakanovich, G.I., Kuz’mitskii, A.M., and Min’ko, L.Ya., Selection of operating modes and parameters of a magnetoplasma compressor, Inzh.-Fiz. Zh., 1992, vol. 62, no. 3, pp. 386–390.Google Scholar
  11. 11.
    Godunov, S.K. and Ryaben’kii, V.S., Raznostnye skhemy, Moscow: Nauka, 1973. Engl. transl.: Difference Schemes, North Holland, 1987.Google Scholar
  12. 12.
    Samarskii, A.A., Teoriya raznostnykh skhem, Moscow: Nauka, 1977. Engl. transl.: The Theory of Difference Schemes, CRC Press, 2001.Google Scholar
  13. 13.
    Samarskii, A.A. and Popov, Yu.P., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for Solving Gasdynamic Problems), Moscow: Nauka, 1980.Google Scholar
  14. 14.
    Richtmyer, R.D. and Morton, K.W., Difference Methods for Initial Value Problems, New York-London-Sydney: Kluwer Academic/Plenum Publishers, 1967.zbMATHGoogle Scholar
  15. 15.
    Oran, E. and Boris, J., Numerical Simulation of Reactive Flow, New York-Amsterdam-London: Elsevier Science, 1987.zbMATHGoogle Scholar
  16. 16.
    Brushlinskii, K.V., Zhdanova, N.S., and Stepin, E.V., Acceleration of plasma in coaxial channels with preshaped electrodes and longitudinal magnetic field, Comput. Math. Math. Phys., 2018, vol. 58, no. 4, pp. 593–603.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Brushlinskii, K.V., Mathematical models of plasma in Morozov’s projects, Plasma Phys. Rep., 2019, vol. 45, no. 1, pp. 33–45.Google Scholar
  18. 18.
    Brushlinskii, K.V., Morozov, A.I., Paleichik, V.V., and Savel’ev, V.V. Two-dimensional compressional plasma flow in coaxial channel, Sov. J. Plasma Phys., 1976, vol. 2, no. 4, pp. 291–296.Google Scholar
  19. 19.
    Ananin, S.I., Calculation of the dynamics of compressive flows in a quasisteady plasma accelerator in the ring inflow approximation, Sov. J. Plasma Phys., 1992, vol. 18, no. 3, pp. 205–207.Google Scholar
  20. 20.
    Kalugin, G.A., Effect of dissipative processes on compression flows in a plasma accelerator, Fluid Dynam., 1991, vol. 26, no. 3, pp. 402–408.MathSciNetGoogle Scholar
  21. 21.
    Kalugin, G.A., Numerical calculation of compression flows in plasma accelerator channel, Mat. Model., 1991, vol. 3, no. 1, pp. 25–36.Google Scholar
  22. 22.
    Brushlinskii, K.V. and Zhdanova, N.S., MHD flows in the channels of plasma accelerators with a longitudinal magnetic field, Plasma Phys. Rep., 2008, vol. 34, no. 12, pp. 1037–1045.Google Scholar
  23. 23.
    Volkov, Ya.F., Kulik, N.V., Marinin, N.V., Morozov, A.I., Tereshin, V.I., et al. Analysis of plasma flow parameters generated by full-scale QSPA Kh-50, Sov. J. Plasma Phys., 1992, vol. 18, no. 4, pp. 718–723.Google Scholar
  24. 24.
    Brushlinskii, K.V. and Ratnikova, T.A., Some problems of two-fluid MHD with a transverse magnetic field, Mat. Model., 1996, vol. 8, no. 2, pp. 75–90.Google Scholar
  25. 25.
    Kozlov, A.N., Two-fluid magnetohydrodynamic model of plasma flows in a quasi-steady-state accelerator with a longitudinal magnetic field, J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 3, pp. 396–405.zbMATHGoogle Scholar
  26. 26.
    Kulikovskiii, A.G. and Lyubimov, G.A., Magnitnaya gidrodinamika, Moscow: Logos, 2005, 2nd ed. Engl. version: Magnetohydrodynamics, Boston: Addison-Wesley, 1965.Google Scholar
  27. 27.
    Brushlinskii, K.V. and Zhdanova, N.S., Computation of axisymmetric MHD flows in a channel with an external longitudinal magnetic field, Comput. Math. Math. Phys., 2006, vol. 46, no. 3, pp. 527–536.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Zalesak, S.T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 1979, vol. 31, pp. 335–362.MathSciNetzbMATHGoogle Scholar
  29. 29.
    Harten, A., Conservation schemes for hyperbolic conservation laws, J. Comp. Phys., 1983, vol. 49, pp. 357–393.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ratnikova, T.A., Godunov’s scheme in MHD problems with a transverse magnetic field, Mat. Model., 1997, vol. 9, no. 8, pp. 3–15.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Godunov, S.K., A difference method for the numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 1959, vol. 47 (89), no. 3, pp. 271–306.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Brushlinskii, K.V., Matematicheskie osnovy vychislitel’noi mekhaniki zhidkosti, gaza i plazmy (Mathematical Foundations of Computational Mechanics of Fluid, Gas, and Plasma), Dolgoprudnyi: Intellekt, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Engineering Physics InstituteNational Research Nuclear University MEPhIMoscowRussia

Personalised recommendations