Advertisement

Differential Equations

, Volume 55, Issue 5, pp 620–630 | Cite as

Definition and Some Properties of Perron Stability

  • I. N. SergeevEmail author
Ordinary Differential Equations

Abstract

The natural notions of Perron stability, Perron asymptotic stability, and Perron complete instability of the zero solution of a differential system are introduced. Peculiar features of these notions are noted in the one-dimensional, autonomous, and linear cases. Their connections with Perron exponents and with their counterparts in the sense of Lyapunov are described. The complete coincidence of the possibilities for studying the Perron and Lyapunov stability and asymptotic stability in the first approximation is revealed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perron, O., Die Ordnungszahlen linearer Differentialgleichungssysteme, Math. Zeitschr., 1930, vol. 31, no. 5, pp. 748–766.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Izobov, N.A., Vvedenie v teoriyu pokazatelei Lyapunova (Introduction to the Theory of Lyapunov Exponents), Minsk: Belarusian State Univ., 2006.Google Scholar
  3. 3.
    Nemytskii, V.V. and Stepanov, V.V., Kachestvennaya teoriya differentsial’nykh uravnenii (Qualitative Theory ol Differential Equations), Moscow-Leningrad: Gos. Izd. Tekh.-Teor. Lit., 1949.Google Scholar
  4. 4.
    Bylov, B.F., Vinograd, R.E., Grobman, D.M., and Nemytskii, V.V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti (Theory ol Lyapunov Exponents and Its Applications to Stability Problems), Moscow: Nauka, 1966.Google Scholar
  5. 5.
    Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory ol Stability), Moscow: Nauka, 1967.Google Scholar
  6. 6.
    Sergeev, I.N., Definition ol Perron stability and its relation to Lyapunov stability, Differ. Uravn., 2018, vol. 54, no. 6, pp. 855–856.Google Scholar
  7. 7.
    Sergeev, I.N., Perron stability and simplified Vinograd-Millionshchikov central exponents, in XIV Mezh-dunar. konf. “Ustoichivost’ ikolehaniya nelineinykh sistem upravleniya” (konf. Pyatnitskogo): annotatsii dokl. (Ext. Abstr.-XIV Int. Conl. “Stability and Oscillations ol Nonlinear Control Systems”, Pyatnitskii Conf.), May 30-June 1, 2018, Moscow: Trapeznikov Inst. Control Sci., 2018, p. 59.Google Scholar
  8. 8.
    Sergeev, I.N., On the study ol the Perron stability ol one-dimensional and autonomous differential systems, Differ. Uravn., 2018, vol. 54, no. 11, pp. 1561–1562.Google Scholar
  9. 9.
    Sergeev, I.N., Studying Perron stability of linear differential systems, Differ. Uravn., 2018, vol. 54, no. 11, pp.1571–1572.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations