Differential Equations

, Volume 55, Issue 1, pp 105–112 | Cite as

Guaranteed Control Problem for a Parabolic Equation with Memory

  • V. I. MaksimovEmail author
Control Theory


We consider the feedback control problem for a nonlinear distributed equation with memory. An algorithm for solving this problem based on constructions of the theory of positional differential games is proposed under the assumption that the equation is subjected to an unknown dynamic disturbance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchholz, R., Engel, H., Kanimann, E., and Tröltzsch, F., On the optimal control of the Schlögl-model, Comput. Optim. Appl., 2013, vol. 56, no. 1, pp. 153–185.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Casas, E., Ryll C., and Tröltzsch, F., Sparse optimal control of the Schlögl and FitzHugh–Nagumo systems, Comput. Methods Appl. Math., 2013, vol. 13, no. 4, pp. 415–442.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bretten, T. and Kunisch, K., Riccati-based feedback control of the monodomain equations with the FitzHugh–Nagumo model, SIAM J. Control Optim., 2014, vol. 52, no. 6, pp. 4057–4081.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.Google Scholar
  5. 5.
    Grigorenko, N.L., Matematicheskie metody upravleniya neskol’kimi dinamicheskimi protsessami (Mathematical Methods of Control of Several Dynamic Processes), Moscow: Mosk. Gos. Univ., 1990.Google Scholar
  6. 6.
    Osipov, Yu.S., Differential games in systems with aftereffect, Dokl. Akad. Nauk SSSR, 1975, vol. 196, no. 4, pp. 761–768.Google Scholar
  7. 7.
    Osipov, Yu.S., Positional control in parabolic systems, J. Appl. Math. Mech., 1977, vol. 41, no. 2, pp. 187–193.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Osipov, Yu.S., Izbrannye trudy (Selected Papers), Moscow: Mosk. Gos. Univ., 2009.Google Scholar
  9. 9.
    Maksimov, V.I., Guidance problem for a distributed system with incomplete information on the state coordinates and an unknown initial state, Differ. Equations, 2016, vol. 52, no. 11, pp. 1442–1452.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Maksimov, V.I., On guaranteed feedback control of phase field equations with complete and incomplete information, Dokl. Math., 2015, vol. 91, no. 3, pp. 336–340.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Osipov, Yu.S., Kryazhimskii, A.V., and Maksimov, V.I., N.N. Krasovskii’s extremal shift method and problems of boundary control, Autom. Remote Control, 2009, vol. 70, no. 4, pp. 577–588.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Osipov, Yu.S., Maksimov, V.I., and Pandolfi, L., The robust boundary control problem: the case of Dirichlet boundary conditions, Dokl. Math. 2000, vol. 62, pp. 205–207.Google Scholar
  13. 13.
    Maksimov, V.I. and Osipov, Yu.S., Infinite-horizon boundary control of distributed systems, Comput. Math. Math. Phys., 2016, vol. 56, no. 1, pp. 14–25.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Maksimov, V.I., Game control problem for a phase field equation, J. Optim. Theory Appl., 2016, vol. 170, no. 1, pp. 294–307.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Maksimov, V.I. and Surkov, P.G., On a certain problem on feedback control for a parabolic equation with memory, Differ. Equations, 2017, vol. 53, no. 1, pp. 115–121.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations