Cosmic Research

, Volume 56, Issue 4, pp 255–266 | Cite as

Detection of Molecular Scattering Field from a Polarization Analysis of the Sky Background during Transitive Twilight and Temperature Measurements near the Stratopause

  • O. S. UgolnikovEmail author
  • I. A. Maslov
  • B. V. Kozelov


The simplest version of the method of detecting the single molecular scattering field based on the polarization measurements of the twilight sky background by all-sky cameras has been considered. The method can be used during transitive twilight (with solar zenith angles of 94°–98°), when effective single scattering occurs in the upper stratosphere and lower mesosphere. The long-term measurements conducted using this method in the Moscow region and Apatity make it possible to determine the temperature of these atmospheric layers and estimate the contribution and properties of multiple scattering during the transitive twilight.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roble, R.G. and Dickinson, R.E., How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 1989, vol. 16, pp. 1441–1444.ADSCrossRefGoogle Scholar
  2. 2.
    Rind, D., Shindell, D., Lonegran, P., and Balachandran, N.K., Climate change and the middle atmosphere. Part III: The doubled CO2 climate revisited, J. Clim., 1998, vol. 11, pp. 876–894.ADSCrossRefGoogle Scholar
  3. 3.
    Ramaswamy, V., Chanin, M.-L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., Keckhut, P., Koshelkov, Y., Labitzke, K., Lin, J.-J.R., O’Neill, A., Nash, J., Randel, W., Rood, R., Shine, K., Shiotani, M., and Swinbank, R., Stratospheric temperature trends: Observations and model simulations, Rev. Geophys., 2001, vol. 39, pp. 71–122.ADSCrossRefGoogle Scholar
  4. 4.
    Thompson, D.W.J., Seidel, D.J., Randel, W.J., Zou, C.-Z., Butler, A.H., Mears, C., Osso, A., Long, C., and Lin, R., The mystery of recent stratospheric temperature trends, Nature, 2012, vol. 491, pp. 692–697.ADSCrossRefGoogle Scholar
  5. 5.
    Golitsyn, G.S., Semenov, A.I., Shefov, N.N., Fishkova, L.M., Lysenko, E.V., and Perov, S.P., Long-term temperature trends in the middle and upper atmosphere, Geophys. Res. Lett., 1996, vol. 23, pp. 1741–1744.ADSCrossRefGoogle Scholar
  6. 6.
    Beig, G., Keckhut, P., Lowe, R.P., et al., Review of mesospheric temperature trends, Rev. Geophys., 2003, vol. 41, no. 4, pp. 1015–1055.ADSCrossRefGoogle Scholar
  7. 7.
    Vargin, P.N., Yushkov, V.A., Khaikin, S.M., Tsvetkova, N.D., Koctrykin, S.V., and Volodin, E.M., Climate change and the middle atmosphere: Increasingly more questions, Herald Russ. Acad. Sci., 2010, vol. 80, no. 1, pp. 47–56.CrossRefGoogle Scholar
  8. 8.
    Matsuno, T., A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 1971, vol. 28, pp. 1479–1494.ADSCrossRefGoogle Scholar
  9. 9.
    Labitzke, K. and Naujokat, B., The lower Arctic stratosphere in winter since 1952, SPARC Newsl., 2000, vol. 15, pp. 11–14.Google Scholar
  10. 10.
    Nikolashkin, S.V., Titov, S.V., Marichev, V.N., Bychkov, V.V., Kurkin, V.I., Chernigovskaya, M.A., and Nepomnyashchii, Yu.A., Lidar studies of the behavior of winter sudden stratospheric warmings in Siberia and the Far East, Nauka Obraz., 2013, vol. 69, pp. 10–17.Google Scholar
  11. 11.
    von Zahn, U., Fiedler, J., Naujokat, B., Langematz, U., and Kruger, K., A note on record-high temperatures at the northern polar stratopause in winter 1997/98, Geophys. Res. Lett., 1998, vol. 25, pp. 4169–4172.Google Scholar
  12. 12.
    France, J.A., Harvey, V.L., Randall, C.E., Hitchman, M.H., and Schwartz, M.J., A climatology of stratopause temperature and height in the polar vortex and anticyclones, J. Geophys. Res., 2012, vol. 117, D06116.ADSCrossRefGoogle Scholar
  13. 13.
    Zuev, V.V., Marichev, V.N., and Bondarenko, S.L., Study of the accuracy characteristics of temperature profiles reconstructed from lidar signals of molecular scattering, Opt. Atmos. Okeana, 1996, vol. 9, no. 12, pp. 1615–1619.Google Scholar
  14. 14.
    Marichev, V.N. and Bochkovskii, D.A., Lidar measurements of air density in the middle atmosphere. Part 1. Modeling of the potential capabilities in the visible spectral range, Opt. Atmos. Okeana, 2013, vol. 26, no. 7, pp. 553–563.Google Scholar
  15. 15.
    Russell, J.M., III, Mlynczak, M.G., Gordley, L.L., Tansock, J., and Esplin, R., An overview of the SABER experiment and preliminary calibration results, Proc. SPIE, 1999, vol. 3756, pp. 277–288.ADSGoogle Scholar
  16. 16.
    Schwartz, M.J., Lambert, A., Manney, G.L., et al., Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, J. Geophys. Res., 2008, vol. 113, D15S11.ADSCrossRefGoogle Scholar
  17. 17.
    Hauchecorne, A. and Chanin, M.-L., Density and temperature profiles obtained by lidar between 35 and 70 km, Geophys. Res. Lett., 1980, vol. 7, pp. 565–568.ADSCrossRefGoogle Scholar
  18. 18.
    Rozenberg, G.V., Sumerki (Twilight), Moscow: Fizmatlit. 1963.Google Scholar
  19. 19.
    Ugolnikov, O.S., Twilight sky photometry and polarimetry: The problem of multiple scattering at the twilight time, Cosmic Res., 1999, vol. 37, no. 2, pp. 159–166.ADSGoogle Scholar
  20. 20.
    Ugolnikov, O.S. and Maslov, I.A., Multicolor polarimetry of the twilight sky: The role of multiple light scattering as a function of wavelength, Cosmic Res., 2002, vol. 40, no. 3, pp. 224–232.ADSCrossRefGoogle Scholar
  21. 21.
    Ugolnikov, O.S. and Maslov, I.A., Multicolor polarimetry of the twilight sky: The role of multiple light scattering as a function of wavelength, Cosmic Res., 2002, vol. 40, no. 3, pp. 224–232.ADSCrossRefGoogle Scholar
  22. 22.
    Ugolnikov, O.S. and Maslov, I.A., Summer mesosphere temperature distribution from wide-angle polarization measurements of the twilight sky, J. Atmos. Sol.-Terr. Phys., 2013, vol. 105–106, pp. 8–14.CrossRefGoogle Scholar
  23. 23.
    Ugolnikov, O.S. and Kozelov B.V., Study of the mesosphere using wide-field twilight polarization measurements: Early results beyond the polar circle, Cosmic Res., 2016, vol. 54, no. 4, pp. 279–284.ADSCrossRefGoogle Scholar
  24. 24.
    Ugolnikov, O.S. and Maslov, I.A., Analysis of the direction of the twilight sky background polarization as a tool for selecting single scattering, Cosmic Res., 2017, vol. 55, no. 3, pp. 169–177.CrossRefGoogle Scholar
  25. 25.
    Ugolnikov, O.S. and Maslov, I.A., Investigations of the background stratospheric aerosol using multicolor wide-angle measurements of the twilight glow background, Cosmic Res., 2018, vol. 56, no. 2, pp. 85–93.ADSCrossRefGoogle Scholar
  26. 26.
    Ugolnikov, O.S., Maslov, I.A., Kozelov, B.V., and Dlugach, J.M., Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles, Planet. Space Sci., 2016, vol. 125, pp. 105–113.ADSCrossRefGoogle Scholar
  27. 27.
    Ugolnikov, O.S., Galkin, A.A., Pilgaev, S.V., and Roldugin, A.V., Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis, Planet. Space Sci., 2017, vol. 146, pp. 10–19.ADSCrossRefGoogle Scholar
  28. 28.
    Ugolnikov, O.S. and Maslov, I.A., Detection of Leonids meteoric dust in the upper atmosphere by polarization measurements of the twilight sky, Planet. Space Sci., 2007, vol. 55, pp. 1456–1463.ADSCrossRefGoogle Scholar
  29. 29.
    Ugolnikov, O.S. and Maslov, I.A., Studies of the stratosphere aerosol layer based on polarization measurements of the twilight sky, Cosmic Res., 2009, vol. 47, no. 3, pp. 198–207.ADSCrossRefGoogle Scholar
  30. 30.
    Ugolnikov, O.S. and Maslov, I.A., Polarization studies of contribution of aerosol scattering to the glow of twilight sky, Cosmic Res., 2005, vol. 43, no. 6, pp. 404–412.ADSCrossRefGoogle Scholar
  31. 31.
    Postylyakov, O.V., Linearized vector radiative transfer model MCC++ for a spherical atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 88, pp. 297–303.ADSCrossRefGoogle Scholar
  32. 32.
    Ugolnikov, O.S., Postylyakov, O.V., and Maslov, I.A., Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky, J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 88, pp. 233–241.ADSCrossRefGoogle Scholar
  33. 33.
    Zaginailo, Yu.I., Determination of the second twilight brightness by the method of the twilight probing of the Earth’s atmosphere, Odessa Astron. Publ., 1993, vol. 6, pp. 59–67.ADSGoogle Scholar
  34. 34.
    Bourassa, A.E., Degenstein, D.A., and Llewellyn, E.J., Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra, Atmos. Chem. Phys. Discuss., 2008, vol. 8, pp. 4001–4016.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. S. Ugolnikov
    • 1
    Email author
  • I. A. Maslov
    • 1
    • 2
  • B. V. Kozelov
    • 3
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  3. 3.Polar Geophysical InstituteApatityRussia

Personalised recommendations