Cosmic Research

, Volume 56, Issue 4, pp 293–305 | Cite as

The Importance of Thermal Modes of Astrophysical Instruments in Solving Problems of Extra-Atmospheric Astronomy

  • N. P. SemenaEmail author


An analytical review of the systems for ensuring the thermal mode of current and prospective space astrophysical instruments has been performed, which showed that, in order to solve most of the current important problems of extra-atmospheric astronomy, the exact thermal stabilization of the mirror system and the radiation receiver of space telescopes has almost the same value as the level of their basic functional characteristics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fundamental’nye kosmicheskie issledovaniya (Fundamental Space Research), vol. 1: Astrofizika (Astrophysics), Raikunov, G.G., Ed., Moscow: Fizmatlit, 2014.Google Scholar
  2. 2.
    Semena, N.P. and Konovalov, A.A., Methods for creating the self-regulating mechanisms of passive systems for ensuring thermal regime of devices for space application, Thermophys. Aeromech., 2007, vol. 14, no. 1, pp. 81–91.ADSCrossRefGoogle Scholar
  3. 3.
    Fenimore, E.E. and Canon, T.M., Coded aperture imaging with uniform redundant arrays, Appl. Opt., 1978, vol. 17, no. 3, pp. 337–347.ADSCrossRefGoogle Scholar
  4. 4.
    Kleinknecht, K., Detectors for Particle Radiation, Cambridge: Cambridge Univ. Press, 1987; Moscow: Mir, 1990.Google Scholar
  5. 5.
    Grebenev, S.A., Markevich, M.L., Pavlinskii, M.N., and Syunyaev, R.A., The ART-P X-ray telescope onboard the Granat observatory, Zemlya Vselennaya, 1993, no. 6, pp. 3–12.ADSGoogle Scholar
  6. 6.
    X-Ray Microscopy: Proceedings of the International Symposium, Gottingen, Germany, September 14–16, 1983, Schmahl, G. and Rudolph, D., Eds., Berlin: Springer, 1984; Moscow: Mir, 1987.Google Scholar
  7. 7.
    Akimov, Yu.K., Ignat’ev, O.V., Kalinin, A.I., and Kushniruk, V.F., Poluprovodnikovye detektory v eksperimental’noi fizike (Semiconductor Detectors in Experimental Physics), Moscow: Energoizdat, 1989.Google Scholar
  8. 8.
    Baranochnikov, M.L., Priemniki i detektory izluchenii. Spravochnik (Receivers and Detectors of Radiation. AHandbook), Moscow: DMK Press, 2012.Google Scholar
  9. 9.
    Trishenkov, M.A., Fotopriemnye ustroistva i PZS. Obnaruzhenie slabykh opticheskikh signalov (Photoreceiver Devices and CCDs. Revealing Weak Optical Signals), Moscow: Radio i svyaz, 1992.Google Scholar
  10. 10.
    Medvedev, M.N., Stsintillyatsionnye detektory (Scintillation Detectors), Moscow: Atomizdat, 1977.Google Scholar
  11. 11.
    Semena, N., Pavlinsky, M., Buntov, M., et al., ARTXC/SRG: Results of thermo-vacuum tests, Proc. SPIE, 2014, vol. 9144. doi 10.1117/12.2055941Google Scholar
  12. 12.
    Semena, N., Pavlinsky, M., Buntov, V., et al., ARTXC/SRG: Results of qualification thermo-vacuum tests, Proc. SPIE, 2016, vol. 9905. doi 10.1117/12.2231276Google Scholar
  13. 13.
    Pavlinsky, M., Akimov, V., Levin, V., et al., Status of ART-XC/SRG instrument, Proc. SPIE, 2016, vol. 9905. doi 10.1117/12.2230974Google Scholar
  14. 14.
    Pavlinsky, M., Akimov, V., Levin, V., et al., The ARTXC instrument on board the SRG mission, Proc. SPIE, 2016, vol. 8443. doi 10.1117/12.925376Google Scholar
  15. 15.
    Semena, N.P., The use of scale models in ground tests reproducing heat transfer in space, Thermophys. Aeromech., 2014, vol. 21, no. 1, pp. 45–55.ADSCrossRefGoogle Scholar
  16. 16.
    Semena, N.P. and Serbinov, D.V., Mathematical interpretation of a thermal experiment simulating cosmic space conditions, Tepl. Protsessy Tekh., 2016, vol. 8, no. 9, pp. 423–431.Google Scholar
  17. 17.
    Pagani, C., Morris, D.S., Racusin, J., et al., Characterization and evolution of the swift x-ray telescope instrumental background, 2007, Proc. SPIE, vol. 6686. doi 10.1117/12.73439810.1117/12.734398Google Scholar
  18. 18.
    Fürmetz, M., Eder, J., Pfeffermann, E., and Predehl, P., The x-ray telescope eROSITA: qualification of the thermal control system, Proc. SPIE, 2014, vol. 9144. doi 10.1117/12.2057346Google Scholar
  19. 19.
    Predehl, P., Andritschke, R., Babyshkin, V., et al., eRosita on SRG, Proc. SPIE, 2016, vol. 9905. doi 10.1117/12.2235092Google Scholar
  20. 20.
    Fürmetz, M., Eder, J., Pfeffermann, E., et al., The thermal control system of the X-ray telescope eROSITA on Spektrum–Roentgen–Gamma, Proc. SPIE, 2012, vol. 8443. doi 10.1117/12.925490Google Scholar
  21. 21.
    Giacconi, R., The Einstein X-ray Observatory, Sci. Am., 1980, vol. 242, pp. 80–85.CrossRefGoogle Scholar
  22. 22.
    Pfeffermann, E., Briel, U.G., Hippmann, H., et al., The focal plane instrumentation of the ROSAT telescope, Proc. SPIE, 1986, vol. 0733. doi 10.1117/12.964956Google Scholar
  23. 23.
    Tashiro, M., Makishima, K., Ezawa, H., et al., In-orbit performance of the GIS instrument on board ASCA (ASTRO-D), Proc. SPIE, 1995, vol. 2518. doi 10.1117/12.218370Google Scholar
  24. 24.
    Weisskopf, M.C., Tananbaum, H.D., Van Speybroeck, L.P., et al., Chandra X-ray Observatory (CXO): Overview, Proc. SPIE, 2000, vol. 4012. doi 10.1117/12.391545Google Scholar
  25. 25.
    Gondoin, P., de Chambure, D., van Katwijk, K., et al., X-ray multi-mirror (XMM) telescope, Proc. SPIE, 1994, vol. 2279. doi 10.1117/12.193178Google Scholar
  26. 26.
    Mason, K.O., Breeveld, A., Much, R., et al., The XMM-Newton Optical/UV Monitor Telescope, Astron. Astrophys., 2001, vol. 365, pp. L36–L44.Google Scholar
  27. 27.
    Burrows, D.N., Kennea, J.A., Abbey, A.F., et al., The swift x-ray telescope: Status and performance, Proc. SPIE, 2007, vol. 6686. doi 10.1117/12.735130Google Scholar
  28. 28.
    Kennea, J.A., Burrows, D.N., Wells, A., et al., Controlling the Swift XRT CCD temperature via passive cooling, Proc. SPIE, 2005, vol. 5898. doi 10.1117/12.617681Google Scholar
  29. 29.
    Morris, D.C., Burrows, D.N., Hill, J.E., et al., Temperature dependent calibration products of the SWIFT X-ray telescope, Proc. SPIE, 2005, vol. 5898. doi 10.1117/12.618019Google Scholar
  30. 30.
    Harp, D.I., Liebe, C.C., Craig, W., Harrison, F., Kruse-Madsen, K., and Zoglauer, A., NuSTAR: system engineering and modeling challenges in pointing reconstruction for a deployable x-ray telescope, Proc. SPIE, 2010, vol. 7738. doi 10.1117/12.856626Google Scholar
  31. 31.
    Harrison, F.A., Craig, W.W., Christensen, F.E., et al., The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission, Astrophys. J., 2013, vol. 770, no. 2, id 103. doi 10.1088/0004-637X/770/2/103Google Scholar
  32. 32.
    Gendreau, K.C., Arzoumanian, Z., Adkins, P.W., et al., The Neutron star Interior Composition Explorer (NICER): design and development, Proc. SPIE, 2016, vol. 9905. doi 10.1117/12.2231304Google Scholar
  33. 33.
    Kozlov, L.V., Nusinov, M.D., Akishin, A.I., et al., Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy (Simulation of Thermal Regimes of Spacecraft and Its Environment), Moscow: Mashinostroenie, 1971.Google Scholar
  34. 34.
    Alatyrtsev, A.A., Alekseev, A.I., Baikov, M.A., et al., Inzhenernyi spravochnik po kosmicheskoi tekhnike (Engineering Handbook of Space Technology), Moscow: Voennoe izdatel’stvo MO SSSR, 1977.Google Scholar
  35. 35.
    Revnivtsev, M., Semena, N., Akimov, V., et al., The MVN: X-ray monitor of the sky on Russian segment of ISS, Proc. SPIE, 2012, vol. 8443. doi 10.1117/12.925916Google Scholar
  36. 36.
    Semena, N.P., X-ray sky survey, Priroda, 2015, no. 10, p. 91.Google Scholar
  37. 37.
    Serbinov, D.V., Semena, N.P., and Pavlinsky, M.N., Opposite radiators used for thermostabilizing of X-ray detectors of the all sky monitor to be installed on the ISS, J. Eng. Thermophys., 2017, vol. 26, no. 3, pp. 366–376.CrossRefGoogle Scholar
  38. 38.
    Semena, N.P., The features of application of thermoelectric converters in spacecraft systems of temperature control, Thermophys. Aeromech., 2013, vol. 20, no. 2, pp. 211–222.ADSCrossRefGoogle Scholar
  39. 39.
    Feroci, M., Stella, L., van der Klis, M., et al., The Large Observatory For X-Ray Timing (LOFT), Exp. Astron., 2012, vol. 34, no. 2, pp. 415–444.ADSCrossRefGoogle Scholar
  40. 40.
    Zane, S., Walton, D., Kennedy, T., et al., The large area detector of LOFT: the large observatory for X-ray timing, Proc. SPIE, 2012, vol. 8443. doi 10.1117/12.925156Google Scholar
  41. 41.
    Porter, F.S., Audley, M.D., Beiersdorfer, P., et al., Laboratory astrophysics using a spare XRS microcalorimeter, Proc. SPIE, 2000, vol. 4140. doi 10.1117/12.409137Google Scholar
  42. 42.
    Kilbourne, C.A., Audley, M.D., Boyce, K.R., et al., Design and performance of the ASTRO-E/XRS microcalorimeter array and anticoincidence detector, Proc. SPIE, 1999, vol. 3765. doi 10.1117/12.366494Google Scholar
  43. 43.
    Mitsuda, K., Bautz, M., Inoue, H., et al., The X-Ray Observatory Suzaku, Publ. Astron. Soc. Jpn., 2007, no. 59, pp. S1–S7.CrossRefGoogle Scholar
  44. 44.
    Soong, Y., Serlemitsos, P.J., Okajima, T., and Hahne, D., ASTRO-H Soft X-ray Telescope (SXT), Proc. SPIE, 2014, vol. 9144. doi 10.1117/12.2056804Google Scholar
  45. 45.
    Mitsuda, K., Kelley, R.L., Boyce, K.R., et al., The high-resolution x-ray microcalorimeter spectrometer system for the SXS on ASTRO-H, 2010, Proc. SPIE, vol. 7732. doi 10.1117/12.85677810.1117/12.856778CrossRefGoogle Scholar
  46. 46.
    Fujimoto, R., Mitsuda, K., Yamasaki, N., et al., Cooling system for the soft x-ray spectrometer (SXS) onboard ASTRO-H, Proc. SPIE, 2010, vol. 7732. doi 10.1117/12.856909Google Scholar
  47. 47.
    Noda, H., Mitsuda, K., Okamoto, A., et al., Thermal analyses for initial operations of the Soft X-Ray Spectrometer (SXS) onboard ASTRO-H, Proc. SPIE, 2016, vol. 9905. doi 10.1117/12.2231356Google Scholar
  48. 48.
    Lounasmaa, O.V., Experimental Principles and Methods Below 1 K, London: Academic, 1974; Moscow: Mir, 1977.Google Scholar
  49. 49.
    den Herder, J.W., Kelley, R., McCammon, D., et al., The Spektr-RG X-ray calorimeter, Proc. SPIE, 2008, vol. 7011. doi 10.1117/12.786474Google Scholar
  50. 50.
    Henry, R.C., Diffuse background radiation, Astrophys. J., 1999, no. 516, pp. L49–L52.ADSCrossRefGoogle Scholar
  51. 51.
    Hauser, M.G. and Dwek, E., The cosmic infrared background: measurement and implications, Annu. Rev. Astron. Astrophys., 2001, vol. 39, pp. 249–307.ADSCrossRefGoogle Scholar
  52. 52.
    Revnivtsev, M.G., Measurements of the cosmic X-ray background of the Universe and the MVN experiment, Astron. Lett., 2014, vol. 40, no. 11, pp. 667–690.ADSCrossRefGoogle Scholar
  53. 53.
    Darnell, R.J., Cryogenic refractor design techniques, Proc. SPIE, 1985, vol. 0509. doi 10.1117/12.944983Google Scholar
  54. 54.
    Kessler, M.F., The Infrared Space Observatory (ISO), Proc. SPIE, 1986, vol. 0589. doi 10.1117/12.951934Google Scholar
  55. 55.
    Finley, P.T., Spitzer cryogenic telescope assembly performance update, Proc. SPIE, 2005, vol. 5883. doi 10.1117/12.623454Google Scholar
  56. 56.
    Murakami, H., Baba, H., Barthel, P., et al., The infrared astronomical mission AKARI, Publ. Astron. Soc. Jpn., 2007, vol. 59, no. 2, pp. S369–S376.Google Scholar
  57. 57.
    Shinozaki, K., Ogawa, H., Nakagawa, T., et al., Mechanical cooler system for the next-generation infrared space telescope SPICA, Proc. SPIE, 2016, vol. 9904. doi 10.1117/12.2232602Google Scholar
  58. 58.
    Ogawa, H., Nakagawa, T., Matsuhara, H., et al., New cryogenic system of the next-generation infrared astronomy mission SPICA, Proc. SPIE, 2016, vol. 9904. doi 10.1117/12.2231613Google Scholar
  59. 59.
    Sugita, H., Nakagawa, T., Murakami, H., et al., Cryogenic infrared mission JAXA/SPICA with advanced cryocoolers, Cryogenics, 2006, vol. 46, nos. 2–3, pp. 149–157. doi 10.1016/j.cryogenics.2005.11.017ADSCrossRefGoogle Scholar
  60. 60.
    Smirnov, A.V., Baryshev, A.M., Pilipenko, S.V., et al., Space mission Millimetron for terahertz astronomy, Proc. SPIE, 2012, vol. 8442, doi 10.1117/12.927184Google Scholar
  61. 61.
    Gardner, J.P., Mather, J.C., Clampin, M., et al., The James Webb Space Telescope, Space Sci. Rev., 2006, vol. 123, no. 4, pp. 485–606.ADSCrossRefGoogle Scholar
  62. 62.
    Bos, B.J., Kubalak, D.A., Antonille, S.R., et al., Cryogenic pupil alignment test architecture for the James Webb Space Telescope integrated science instrument module, Proc. SPIE, 2008, vol. 7010. doi 10.1117/12.789808Google Scholar
  63. 63.
    Salomonovich, A.E., Sidyakina, T.M., Khaikin, A.S., et al., Automatic three-cascade helium refrigerator for cooling the receivers of the BST-1M submillimeter telescope of the orbital station Salyut 6, Kosm. Issled., 1981, vol. 19, pp. 154–159.ADSGoogle Scholar
  64. 64.
    Leroy, C., Maisonneuve, M., Piat, M., et al., Simulation of the Planck-HFI thermal control system, Proc. SPIE, 2008, vol. 7017. doi 10.1117/12.788330Google Scholar
  65. 65.
    Tulin, D.V., Vinogradov, I.S., Shabarchin, A.F., et al., System of maintaining the thermal regime of a space radio telescope, Cosmic Res., 2014, vol. 52, no. 5, pp. 386–390.ADSCrossRefGoogle Scholar
  66. 66.
    Novikov, S.B., Mishin, G.S., Starostin, A.N., et al., Calculated–theoretical research of a thermal mode largesized space radiotelescope of Spectrum-R, in Sixth European Symposium on Space Environmental Control Systems held in Noordwijk, Netherlands, 20–22 May, 1997, Guyenne, T.-D., Ed., European Space Agency, 1997, SP-400, p. 141.Google Scholar
  67. 67.
    Endelman, L.L., Hubble space telescope: mission, design, problems, and solutions, Proc. SPIE, 1995, vol. 2513. doi 10.1117/12/209584Google Scholar
  68. 68.
    Sachkov, M., Shustov, B., and Goméz de Castro, A.I., Instrumentation of the WSO-UV project, Proc. SPIE, 2014, vol. 9144. doi 10.1117/12.2055513Google Scholar
  69. 69.
    Jedrich, N.M., Gregory, T., Zimbelman, D.F., et al., Cryogenic cooling system for restoring IR science on the Hubble space telescope, Proc. SPIE, 2003, vol. 4850. doi 10.1117/12.461805Google Scholar
  70. 70.
    Schoenfelder, V., Aarts, H., Bennett, K., et al., Instrument description and performance of the Imaging Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory, Astrophys. J. Suppl. Ser., 1993, vol. 86, no. 2, pp. 657–692.ADSCrossRefGoogle Scholar
  71. 71.
    McEnery, J.E., Michelson, P.F., Paciesas, W.S., and Ritz, S., Fermi Gamma-Ray Space Telescope, Opt. Eng., 2012, vol. 51, no. 1, pp. 011012-1–011012-10. doi 10.1117/1.OE.51.1.011012ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Space Research Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations