Cosmic Research

, Volume 56, Issue 4, pp 306–316 | Cite as

On the Precession of Saturn

  • P. S. Krasil’nikov
  • R. N. AmelinEmail author


The precession of Saturn under the effect of the gravity of the Sun, Jupiter and planet’s satellites has been investigated. Saturn is considered to be an axisymmetric (A = B) solid body close to the dynamically spherical one. The orbits of Saturn and Jupiter are considered to be Keplerian ellipses in the inertial coordinate system. It has been shown that the entire set of small parameters of the problem can be reduced to two independent parameters. The averaged Hamiltonian function of the problem and the integrals of evolutionary equations are obtained disregarding the effect of satellites. Using the small parameter method, the expressions for the precession frequency and the nutation angle of the planet’s axis of rotation caused by the gravity of the Sun and Jupiter are obtained. Considering the planet with satellites as a whole preceding around the normal to the unmovable plane of Saturn’s orbit, the satellites effect on the Saturn rotation is taken into account via the corrections in the formula for the undisturbed precession frequency. The satellites are shown to have no effect on the nutation angle (in the framework of the accepted model), and the disturbances from Jupiter to make the main contribution to the nutation angle evolution. The effect of Jupiter on the nutation angle and the precession period is described with regard to the attraction of satellites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abalakin, V.K., Aksenov, E.P., Grebenikov, E.A., and Ryabov, Yu.A., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike (A Reference Manual on Celestial Mechanics and Astrodynamics), Moscow: Nauka, 1971.Google Scholar
  2. 2.
    Aksenov, E.P., Teoriya dvizheniya iskusstvennykh sputnikov Zemli (Theory of Motion of Artificial Earth Satellites), Moscow: Nauka, 1977.Google Scholar
  3. 3.
    Beletskii, V.V., Dvizhenie sputnika otnositel’no tsentra mass v gravitatsionnom pole (Satellite Motion Relative to the Center of Mass in the Gravitational Field), Moscow: MGU, 1975.Google Scholar
  4. 4.
    Zlenko, A.A., Stationary solutions and their stability in the problem of evolution of motion of two viscoelastic balls in the field of an attracting center, Cosmic Res., 2012, vol. 50, no. 6, pp. 466–468.ADSCrossRefGoogle Scholar
  5. 5.
    Zlenko, A.A., The force function of two rigid celestial bodies in Delaunay–Andoyer variables, Astron. Rep., 2016, vol. 60, no. 1, pp. 174–181.ADSCrossRefGoogle Scholar
  6. 6.
    Kondratyev, B.P., Precession of the orbital nodes of Jupiter and Saturn triggered by the mutual perturbation: A model of two rings, Sol. Syst. Res., 2014, vol. 48, no. 5, pp. 366–374.ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Krasil’nikov, P.S., The non-linear oscillations of a pendulum of variable length on a vibrating base, J. Appl. Math. Mech., 2012, vol. 76, no. 1, pp. 25–35.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krasil’nikov, P.S., Prikladnye metody issledovaniya nelineinykh kolebanii (Applied Methods for Studying Nonlinear Oscillations), Moscow–Izhevsk: Institut komp’yuternykh issledovanii, 2015.Google Scholar
  9. 9.
    Krasil’nikov, P.S., Rapid nonresonance rotations of spacecraft on conditionally periodic orbits in the restricted three-body problem, Kosm. Issled., 1984, vol. 22, no. 2, pp. 171–180.ADSGoogle Scholar
  10. 10.
    Krasil’nikov, P.S. and Amelin, R.N., On the Mars rotation under the action of gravity torque from the Sun, Jupiter and Earth, Nelineinaya Din., 2015, vol. 11, no. 2, pp. 329–342.CrossRefzbMATHGoogle Scholar
  11. 11.
    Krasil’nikov, P.S. and Amelin, R.N., On Saturn’s rotation relative to a center of mass under the action of the gravitational moments of the Sun and Jupiter, Cosmic Res., 2016, vol. 54, no. 2, pp. 127–133.ADSCrossRefGoogle Scholar
  12. 12.
    Krasil’nikov, P.S. and Zakharova, E.E., Non-resonance satellite rotations around the center of mass in a quasi-periodic orbit in the restricted N-body problem, Kosm. Issled., 1993, vol. 31, no. 6, pp. 11–21.ADSGoogle Scholar
  13. 13.
    Murray, C. and Dermott, S., Solar System Dynamics, New York: Cambridge University Press, 2001; Moscow: Fizmatlit, 2010.CrossRefzbMATHGoogle Scholar
  14. 14.
    Andoyer, M.H., Cours de mécaniquee céleste, Paris: Gauthier-Villars, 1923.zbMATHGoogle Scholar
  15. 15.
    Campbell, J.K. and Anderson, J.D., Gravity field of the Saturnian system from Pioneer and Voyager tracking data, Astron. J., 1989, vol. 97, no. 5, pp. 1485–1495.ADSCrossRefGoogle Scholar
  16. 16.
    Deprit, A., Free rotation of a rigid body studied in the phase plane, Am. J. Phys., 1967, vol. 35, no. 5, pp. 424–428.ADSCrossRefGoogle Scholar
  17. 17.
    French, R.G., Nicholson, P.D., Cooke, M.L., et al., Geometry of the Saturn system from the 3 July 1989 occultation of 28 Sgr and Voyager observations, Icarus, 1993, vol. 103, no. 2, pp. 163–214.ADSCrossRefGoogle Scholar
  18. 18.
    Goldreich, P., Inclination of satellite orbits about an oblate precessing planet, Astron. J., 1965, vol. 70, no. 1, pp. 5–9.ADSCrossRefGoogle Scholar
  19. 19.
    Gray, A., A Treatise on Gyrostatics and Rotational Motion (Theory and Applications), London: Macmillan, 1918.Google Scholar
  20. 20.
    Krasil’nikov, P., Fast non-resonance rotations of spacecraft in restricted three body problem with magnetic torques, Int. J. Non-Linear Mech., 2015, vol. 73, pp. 43–50.CrossRefGoogle Scholar
  21. 21.
    Routh, E.J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, London: Macmillan, 1892.zbMATHGoogle Scholar
  22. 22.
    Tisserand, F., Sur le mouvement de rotation de la terre autour de son centre de gravité, C. R. Acad. Sci., Paris, 1885, vol. 101, pp. 195–199.Google Scholar
  23. 23.
    Ward, W.R., Tidal friction and generalized Cassini’s laws in the solar system, Astron. J., 1975, vol. 80, no. 1, pp. 64–70.ADSCrossRefGoogle Scholar
  24. 24.
    Ward, W.R. and Hamilton, D.P., Tilting Saturn. I. Analytic model, Astron. J., 2004, vol. 128, no. 5, pp. 2501–2509.ADSCrossRefGoogle Scholar
  25. 25.
    Ward, W.R. and Hamilton, D.P., Tilting Saturn. II. Numerical model, Astron. J., 2004, vol. 128, no. 5, pp. 2510–2517.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations