Advertisement

Combustion, Explosion, and Shock Waves

, Volume 55, Issue 3, pp 361–371 | Cite as

Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet

  • Y.-L. Xiao
  • Zh.-X. Xia
  • L.-Y. HuangEmail author
  • L.-K. Ma
  • D.-L. Yang
Article
  • 42 Downloads

Abstract

By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100 μm or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.

Keywords

slurry ramjet boron agglomerate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Natan and S. Rahimi, “The Status of Gel Propellants in Year 2000,” Int._J. Energ. Mater. Chem. Propul. 5, 1–6 (2002).Google Scholar
  2. 2.
    H. Guan, G. Li, and N. Zhang, “Experimental Investigation of Atomization Characteristics of Swirling Spray by ADN Gelled Propellant,” Acta Astronaut. 144, 119–125 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    A. Haddad, B. Natan, and R. Arieli, “The Performance of a Boron Loaded Gel Fuel Ramjet,” Prog. Propul. Phys. 2, 549–568 (2011).Google Scholar
  4. 4.
    A. Gany, “Combustion of Boron–Containing Fuels in Solid Fuel Ramjets,” Int. J. Energ. Mater. Chem. Propul. 2, 91–112 (1991).Google Scholar
  5. 5.
    A. Gany, “Thermodynamic Limitation on Boron Energy Realization in Ramjet Propulsion,” Acta Astronaut. 98 (1), 128–132 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    R. S. Fry, “A Century of Ramjet Propulsion Technology Evolution,” J. Propul. Power. 20 (1), 27–58 (2004).MathSciNetCrossRefGoogle Scholar
  7. 7.
    P. W. Hewitt, “Status of Ramjet Programs in the United States,” in Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2008, pp. 1–10.Google Scholar
  8. 8.
    P. Antaki and F. A. Williams, “Observations on the Combustion of Boron Slurry Droplets in Air,” Combust. Flame 67 (1), 1–8 (1987).CrossRefGoogle Scholar
  9. 9.
    G. Nachmoni and B. Natan, “Combustion Characteristics of Gel Fuels,” Combust. Sci. Technol. 156 (1), 139–157 (2000).CrossRefGoogle Scholar
  10. 10.
    Y. Solomon and B. Natan, “Experimental Investigation of the Combustion of Organic-Gellant-Based Gel Fuel Droplets,” Combust. Sci. Technol. 178 (6), 1185–1199 (2006).CrossRefGoogle Scholar
  11. 11.
    M. K. King, “A Review of Studies of Boron Ignition and Combustion Phenomena at Atlantic Research Corporation over the Past Decade,” Int._J. Energ. Mater. Chem. Propul. 2, 1–81 (1991).Google Scholar
  12. 12.
    Y. Kazaoka, K. Takahashi, M. Tanabe, et al., “Combustion Characteristics of Boron Particles in the Secondary Combustor of Ducted Rockets,” in Proc. of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2001, pp. 1–6.Google Scholar
  13. 13.
    M. A. Gurevich, I. M. Kir’yanov, and E. S. Ozerov, “Combustion of Individual Boron Particles,” Combust., Expl., Shock Waves 5 (2), 217–222 (1969).CrossRefGoogle Scholar
  14. 14.
    V. G. Shevchuk, A. N. Zolotko, and D. I. Poleshchuk, “Ignition of Packed Boron Particles,” Fiz. Goreniya Vzryva 11 (2), 218–223 (1975) [Combust., Expl., Shock Waves 11 (2), 189–192 (1975)].Google Scholar
  15. 15.
    J. T. Holl, S. R. Turns, A. S. P. Solomon, and G. M. Faeth, “Ignition and Combustion of Boron Slurry Agglomerates,” Combust. Sci. Technol. 45 (3/4), 147–166 (1986).CrossRefGoogle Scholar
  16. 16.
    X. Mi, S. Goroshin, A. J. Higgins, R. Stowe, and S. Ringuette, “Dual-Stage Ignition of Boron Particle Agglomerates,” Combust. Flame 160 (11), 2608–2618 (2013).CrossRefGoogle Scholar
  17. 17.
    W. B. Fu, L. Y. Hou, L. P. Wang, and F. H. Ma, “A Unified Model for the Micro-Explosion of Emulsified Droplets of Oil and Water,” Fuel Proces. Technol. 79, 107–119 (2002).CrossRefGoogle Scholar
  18. 18.
    M. D. Scheer, “The Molecular Weight and Vapor Pressure of Gaseous Boron Suboxide,” J. Phys. Chem. 62 (4), 490–493 (2002).CrossRefGoogle Scholar
  19. 19.
    M. K. King, “Boron Particle Ignition in Hot Gas Streams,” Combust. Sci. Technol. 8 (5), 255–273 (1974).Google Scholar
  20. 20.
    S. C. Li and F. A. Williams, “Ignition and Combustion of Boron in Wet and Dry Atmosphere,” Symp. (Int.) Combust. 23 (1), 1147–1154 (1991.CrossRefGoogle Scholar
  21. 21.
    G. Mohan and F. A. Williams, “Ignition and Combustion of Boron in O2/inert Atmospheres,” AIAA J. 10 (3), 776–783 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    A. Ulas, K. K. Kuo, and C. Gotzmer, “Ignition and Combustion of Boron Particles in Fluorine–Containing Environments,” Combust. Flame 127, 1935–1957 (2001).CrossRefGoogle Scholar
  23. 23.
    S. A. Morsi and A. J. Alexander, “An Investigation of Particle Trajectories in Two-Phase Flow Systems,” J. Fluid Mech. 55, 193–208 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Y.-L. Xiao
    • 1
  • Zh.-X. Xia
    • 1
  • L.-Y. Huang
    • 1
    Email author
  • L.-K. Ma
    • 1
  • D.-L. Yang
    • 1
  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations