Combustion, Explosion, and Shock Waves

, Volume 55, Issue 3, pp 335–344 | Cite as

Combustion of Aluminum and Boron Agglomerates Free Falling in Air. I. Experimental Approach

  • O. G. GlotovEmail author
  • G. S. Surodin


This paper presents a review of studies of the combustion of composite propellants containing a combined fuel based on aluminum and boron. A method for studying the combustion of large particles of the combined Al + B fuel in air is described. Burning agglomerated Al/B particles 300–700 μm in diameter were obtained by ignition of miniature pieces of a composition containing 32% binder and 68% micron-sized aluminum and boron powders in the ratio Al/B = 81/19 placed in a burning metal-free sample. Agglomerates formed by the merger of many small particles burned in free fall in air. Procedures are described that were used to process video records of the combustion process and study condensed combustion products (combustion residues of agglomerates) in order to determine the burning time and analyze the transformation of the combined fuel into oxide.


aluminum boron particle agglomerate combustion burning time condensed combustion products scanning electron microscope energy dispersive analysis (EDS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, V. S. Lo-gachev, and A. I. Korotkov, Combustion of Powdered Metals in Active Media (Nauka, Moscow, 1972); FTD-MT-24-551-73, translated by National Technical Information Service, 1973, pp. 1–395.Google Scholar
  2. 2.
    D. A. Yagodnikov, Ignition and Combustion of Powdered Metals (Bauman Moscow State Tech. Univ., Moscow, 2009) [in Russian].Google Scholar
  3. 3.
    Energetic Condensed Systems: A Short Encyclopedic Dictionary, Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].Google Scholar
  4. 4.
    Rocket Propellants, Ed. by Ya. M. Paushkin and A. Z. Chulkov (Mir, Moscow, 1975) [in Russian].Google Scholar
  5. 5.
    I. Timnat, Advanced Chemical Rocket Propulsion (Academic Press, London, 1987).Google Scholar
  6. 6.
    O. G. Glotov, V. E. Zarko, and M. W. Beckstead, “Agglomerate and Oxide Particles Generated in Combustion of Alex Containing Solid Propellants,” in Energetic Materials. Analysis, Diagnostics and Testing, 31st Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2000, pp. 130-(1-14).Google Scholar
  7. 7.
    A. H. Breiter, V. M. Maltsev, and E. I. Popov, “Means of Modifying Metallic Fuel in Condensed Systems,” Fiz. Goreniya Vzryva 26(1), 97–104 (1990) [Combust., Expl., Shock Waves 26 (1), 86–92 (1990).Google Scholar
  8. 8.
    E. I. Popov, L. Ya. Kashporov, V. M. Maltsev, and A. L. Breyter, “On the Combustion Mechanism of Particles of Aluminum-Magnesium Alloys,” Fiz. Goreniya Vzryva 9(2), 240–245 (1973). [Combust., Expl., Shock Waves 9 (2), 204–208 (1973).Google Scholar
  9. 9.
    K. Hori, O. G. Glotov, V. E. Zarko, H. Habu, A. M. M. Faisal, and T. D. Fedotova, “Study of the Combustion Residues for Mg/Al Solid Propellant,” in Energetic Materials: Synthesis, Production and Application, 33rd Int. Annu. Conf. of ICT., Karlsruhe, Germany, 2002, pp. 71-(1-14).Google Scholar
  10. 10.
    D. A. Yagodnikov, E. A. Andreev, V. S. Vorob’ev, and O. G. Glotov, “Ignition, Combustion, and Agglomeration of Encapsulated Aluminum Particles in a Composite Solid Propellant. I. Theoretical Study of the Ignition and Combustion of Aluminum with Fluorine-Containing Coatings,” Fiz. Goreniya Vzryva 42(5), 46–55 (2006) [Combust., Expl., Shock Waves 42 (5), 534–542 (2006)].Google Scholar
  11. 11.
    O. G. Glotov, D. A. Yagodnikov, V. S. Vorob’ev, V. E. Zarko, and V. N. Simonenko, “Ignition, Combustion, and Agglomeration of Encapsulated Aluminum Particles in a Composite Solid Propellant. II. Experimental Studies of Agglomeration,” Fiz. Goreniya Vzryva [Combust., Expl., Shock Waves 43(3), 83–97 (2007) [Combust., Expl., Shock Waves 43 (3), 320–333 (2007)].Google Scholar
  12. 12.
    S. L. Vummidi, Y. Aly, M. Schoenitz, and E. L. Dreizin, “Characterization of Fine Aluminum Powder Coated with Nickel As a Potential Fuel Additive,” J. Propul. Power 26(3), 454–460 (2010).CrossRefGoogle Scholar
  13. 13.
    T. A. Andrzejak, E. Shafirovich, A. Varma, “Ignition Mechanism of Nickel-Coated Aluminum Particle,” Combust. Flame 150, 60–70 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Hahma, A. Gany, and K. Palovuori, “Combustion of Activated Aluminum,” Combust. Flame 145(3), 464–480 (2006).CrossRefGoogle Scholar
  15. 15.
    E. Shafirovich, P. E. Bocanegra, C. Chanveau, I. Gokalp, U. Goldshleger, V. Rosenband, A. Gany, “Ignition of Single Nickel-Coated Aluminum Particles,” Proc. Combust. Inst. 30, 2055–2062 (2005).CrossRefGoogle Scholar
  16. 16.
    V. Rosenband and A. Gany, “Agglomeration and Ignition of Aluminum Particles Coated by Nickel,” in Advancement in Energetic Materials and Chemical Propulsion, Ed. by J. Rivera and K. K. Kuo (Begell House, New York, 2007), pp. 141–149.Google Scholar
  17. 17.
    A. G. Korotkikh, O. G. Glotov, V. A. Arkhipov, V. E. Zarko, and A. B. Kiskin, “Effect of Iron and Boron Ultrafine Powders on Combustion of Aluminized Solid Propellants,” Combust. Flame 178, 195–204 (2017).CrossRefGoogle Scholar
  18. 18.
    J. Liu, D. Liang, J. Xiao, B. Chen, Ya. Zhang, J. Zhou, and K. Cen, “Composition and Characteristics of Primary Combustion Products of Boron-Based Propel-lants,” Fiz. Goreniya Vzryva 53(1), 64–74 (2017) [Combust., Expl., Shock Waves 53 (1), 55–64 (2017)].Google Scholar
  19. 19.
    A. A. Yagodnikov, A. V. Voronetskii, and V. I. Sarab’ev, “Ignition and Combustion of Pyrotechnic Compositions Based on Micro- and Nanoparticles of Aluminum Di-boride in Air Flow in a Two-Zone Combustion Chamber,” Fiz. Goreniya Vzryva 52(3), 51–58 (2016) [Combust., Expl., Shock Waves 52 (3), 51–58 (2016)].Google Scholar
  20. 20.
    V. A. Sorokin, L. S. Yanovskii, V. A. Kozlov, E. V. Surikov, M. S. Sharov, V. D. Feldman, V. P. Frantskevich, N. P. Zhivotov, V. M. Abashev, and V. V. Chervakov, Solid and Pasty Propellant Ramjet Rocket Motors: Fundamentals of Design and Experimental Testing, Ed. by Yu. M. Milekhin and V. A. Sorokin (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  21. 21.
    V. Rosenband and A. Gany, “Thermal Explosion Synthesis of a Magnesium Diboride Powder,” Fiz. Goreniya Vzryva 50(6), 34–39 (2014) [Combust., Expl., Shock Waves 50 (6), 653–657 (2014)Google Scholar
  22. 22.
    Combustion of Boron-Based Solid Propellants and Solid Fuels, Ed. by K. K. Kuo and R. Pein (CRC Press, Boca Raton, 1993).Google Scholar
  23. 23.
    Applications of Turbulent and Multi-Phase Combustion, Ed. by K. K. Kuo and Ragini Acharya (John Wiley and Sons, Hoboken, 2012).Google Scholar
  24. 24.
    A. Gany and Y. M. Timnat, “Advantages and Drawbacks of Boron-Fueled Propulsion,” Acta Astronaut. 29(3), 181–187 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    A. G. Korotkikh, V. A. Arkhipov, O. G. Glotov, and N. N. Zolotarev, “Ignition by Laser Radiation and Combustion of Composite Solid Propellants with Bimetal Powders,” in 5th Int. Congress on Energy Fluxes and Radiation Effects, 2016; J. Phys. Conf. Ser. 830, 012137 (2017); DOI: Scholar
  26. 26.
    O. G. Glotov, V. N. Simonenko, V. E. Zarko, R. K. Tukhtaev, T. F. Grigor’yeva, and T. D. Fedotova, “Combustion Characteristics of Propellants Containing Aluminum-Boron Mechanical Alloy,” in Energetic Materials. Structure and Properties: 35th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2004, pp. 107-(1-16).Google Scholar
  27. 27.
    O. G. Glotov, V. E. Zarko, V. N. Simonenko, T. D. Fedotova, R. K. Tukhtaev, and T. F. Grigor’yeva, “Effect of Al/B Mechanical Alloy on Combustion Characteristics of AP/HMX/Energetic Binder Propellants,” in 36th Int. Annu. Conf. of ICT & 32nd Int. Pyrotechnics Seminar, Karlsruhe, Germany, 2005, pp. 102-(1-12).Google Scholar
  28. 28.
    V. N. Aleksandrov, V. M. Bytskevich, V. K. Verkholo-mov, M. D. Gramenitskii, et al., Integral Solid Propellant Ramjet Rocket Motors. Fundamentals of Theory and Calculation, Ed. by L. S. Yanovskii (Akademkniga, Moscow, 2006) [in Russian].Google Scholar
  29. 29.
    O. G. Glotov, G. S. Surodin, O. N. Zhitnitskaya, and A. B. Kiskin, “Combustion of Monodisperse Agglomerates of Aluminum and Boron in Air,” in Proc. IX All-Russian Conf. with International Participation Propellant Combustion: Theory, Experiment, Applications, Novosibirsk, November 16–18, 2015 (Inst. of Thermo-physics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2015); Google Scholar
  30. 30.
    O. G. Glotov, G. S. Surodin, O. N. Zhitnitskaya, “Combustion of Aluminum and Boron Model Agglomerates in Free Fall in Air,” in Energetic Materials. Synthesis. Characterization and Processing: 47th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2016, pp. 110-(1-12).Google Scholar
  31. 31.
    O. G. Glotov, G. S. Surodin, and O. N. Zhitnitskaya, “Combustion of Model Agglomerates of Aluminum and Boron in Free Fall in Air, ” in Abstract book of the XII International Workshop “HEMs-2016” High Energy Materials: Demilitarization, Antiterrorism and Civil Application, Tomsk, September 7-9, 2016, pp. 45–47; Scholar
  32. 32.
    O. G. Glotov, G. S. Surodin, and O. N. Zhitnitskaya, “Studies of the Combustion Mechanism of Al, Ti, Al + B Particles: Approach using Model Monodisperse Agglomerates,” in Abstracts of the All-Russian Conf. with Int. Participation of Chemistry and Physics of Combustion and Disperse Systems dedicated to the 110th anniversary of birth of A. A. Ko-valsky, Novosibirsk, Russia, September 19-20, 2016, p. 18; Scholar
  33. 33.
    O. G. Glotov, V. V. Karasev, V. E. Zarko, T. D. Fedotova, M. W. Beckstead, “Evolution of Aluminum Agglomerates Moving in Combustion Products of Model Solid Propellant,” in Combustion of Energetic Materials, Ed. by K. K. Kuo and L. T. De Luca (Begell House, New York, 2002), pp. 397–406. [Int. J. Energ. Mater. Chem. Propul. 5 (1–6), 397–406 (2002); DOI:].Google Scholar
  34. 34.
    O. G. Glotov, V. E. Zarko, V. V. Karasev, T. D. Fedotova, and A. D. Rychkov, “Macrokinetics of Combustion of Monodisperse Agglomerates in the Flame of a Model Solid Propellant,” Fiz. Goreniya Vzryva 39(5), 74–85 (2003) [Combust., Expl., Shock Waves 39 (5), 552–562 (2003)].Google Scholar
  35. 35.
    O. G. Glotov and V. A. Zhukov, “Evolution of 100 /am Aluminum Agglomerates and Initially Continuous Aluminum Particles in the Flame of a Model Solid Propellant. I. Experimental Approach,” Fiz. Goreniya Vzryva 44(6), 52–60 (2008) [Combust., Expl., Shock Waves 44 (6), 662–670 (2008)].Google Scholar
  36. 36.
    O. G. Glotov and V. A. Zhukov, “Evolution of 100 /am Aluminum Agglomerates and Initially Continuous Aluminum Particles in the Flame of a Model Solid Propellant. II. Results,” Fiz. Goreniya Vzryva 44(6), 61–71 (2008) [Combust., Expl., Shock Waves 44 (6), 671–681 (2008).Google Scholar
  37. 37.
    O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. I. Experimental Approach,” Fiz. Goreniya Vzryva 49(3), 50–57 (2013) [Combust., Expl., Shock Waves 49 (3), 299–306 (2013)].Google Scholar
  38. 38.
    O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. II. Results of Experiments,” Fiz. Goreniya Vzryva 49(3), 58–71 (2013) [Combust., Expl., Shock Waves 49 (3), 307–319 (2013)].Google Scholar
  39. 39.
    V. A. Arkhipov, T. I. Gorbenko, A. S. Zhukov, and A. V. Pesterev, “Effect of Tin Chloride on the Burning Rate of Heterogeneous Condensed Systems,” Khim. Fiz. Mezoskop. 13(4), 463–469 (2011).Google Scholar
  40. 40.
    T. D. Fedotova, O. G. Glotov, and V. E. Zarko, “Chemical Analysis of Aluminum As a Propellant Ingredient and Determination of Aluminum and Aluminum Nitride in Condensed Combustion Products,” Propell., Explos., Pyrotech. 25(6), 325–332 (2000).CrossRefGoogle Scholar
  41. 41.
    T. D. Fedotova, O. G. Glotov, and V. E. Zarko, “Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders,” Propell., Explos., Pyrotech. 32(2), 160–164 (2007).CrossRefGoogle Scholar
  42. 42.
    L. Ya. Gradus, Handbook on Microscopic Dispersion Analysis (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  43. 43.
    O. G. Glotov, “Image Processing of the Fractal Aggregates Composed of Nanoparticles,” Rus. J. Phys. Chem. A 82(13), 49–54 (2008); DOI: Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations