Advertisement

Combustion, Explosion, and Shock Waves

, Volume 55, Issue 3, pp 289–294 | Cite as

Effect of Heating Rate of the Original ASD-4 Powder and the ASD-4 Powder Modified by the V2O5 Oxide on the Phase Composition of Oxidation Products

  • V. G. ShevchenkoEmail author
  • D. A. Eselevich
  • Z. S. Vinokurov
  • A. V. Konyukova
Article
  • 23 Downloads

Abstract

X-ray diffraction with the help of synchrotron radiation is used to analyze a sequence of phase formation in the oxidation of original and modified Al powders in the case of heating in oxidizing gaseous media with rates of 10 and 100 K/min. It is established that an increase in the heating rate of the modified ASD-4 powder leads to an active growth of metastable phase (θ- and δ′-Al2O3) of aluminum oxide except for the γ-Al2O3 phase. Assumptions about the forms of existence of vanadium in the interaction products are given. It is shown that diffusion limitations in the core—shell system (Al-Al2O3) can be removed under the action of an oxidizing aluminum particle on physicochemical processes at interphase boundaries.

Keywords

aluminum powder modification vanadium pentoxide oxidation heating rate phase analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Beckstead, “A Summary of Aluminum Combustion,” in RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion, Rhode-Saint-Genese, Belgium, 27–31 May 2002, Publ. in RTO-EN-023.Google Scholar
  2. 2.
    N. G. Rogov and M. A. Ishchenko, Mixed Solid Rocket Solid Propellants: Components. Requirements. Properties (Saint Petersburg State Inst. of Technology, St. Petersburg, 2005) [in Russian].Google Scholar
  3. 3.
    V. G. Gopienko et al., Metal Powders of Aluminum, Magnesium, Titanium, and Silicon. Consumer Properties and Applications, Ed. by A. I. Rudskoi (Izd. Politekh. Univ., Saint-Petersburg, 2012) [in Russian].Google Scholar
  4. 4.
    S. G. Fyodorov, Sh. L. Guseinov, and P. A. Storozhenko, “Nanodisperse Metal Powders in Energy Condensed Systems,” Ross. Nanotekhnol. 5, 27–39 (2010.Google Scholar
  5. 5.
    V. I. Levitas, “Mechanochemical Mechanism for Reaction of Aluminium Nano- and Micrometer-Scale Particles,” Roy. Soc. J., 1–14 (2013).Google Scholar
  6. 6.
    V. G. Shevchenko, D. A. Eselevich, A. V. Konyukova, and V. N. Krasil’nikov, “Method for Activating Aluminum Powder,” RF Patent No. 2509790, Publ. March 20, 2014Google Scholar
  7. 7.
    V. G. Shevchenko, D. A. Eselevich, A. V. Konyukova, and V. N. Krasil’nikov, “Effect of Vanadium Containing Activating Additives on the Oxidation of Aluminum Powders,” Khim. Fiz. 33 (10), 10–17 (2014).Google Scholar
  8. 8.
    V. G. Shevchenko, V. N. Krasil’nikov, D. A. Eselevich, et al., “Effect of V2O5 on the Oxidation Mechanism of ASD-4 Powder,” Fiz. Goreniya Vzryva 51 (5), 70–76 (2015) [Combust., Expl., Shock Waves} 51 (5), 572–577 (2015)].Google Scholar
  9. 9.
    V. G. Shevchenko, D. A. Eselevich, V. N. Krasil’nikov, and A. V. Konyukova, “Influence of Ca, Ba, and V2O5 on the Stability of an Oxide Film and the Oxidation of Disperse Aluminum,” Fizikokhim. Poverkh. Zashch. Mater. 53, 508–513 (2017.Google Scholar
  10. 10.
    V. G. Shevchenko, D. A. Eselevich, N. A. Popov, et al., “Oxidation of ASD-4 Powder Modified by V2O5,” Fiz. Goreniya Vzryva 54 (1), 65–71 (2018) [Combust., Expl., Shock Waves} 54 (1), 58–63 (2018)].Google Scholar
  11. 11.
    D. A. Frank-Kamenetskii, Fundamentals of Macrokinetics. Diffusion and Heat Transfer in Chemical Kinetics (Izd. Dom Intellekt, Dolgoprudnyi, 2008) [in Russian].Google Scholar
  12. 12.
    A. N. Shmakov, Complex Diagnostics of the Structure of Materials by X-ray Diffraction Methods on Synchrotron Radiation (Boreskov Inst. of Catal., Novosibirsk, 2014) [in Russian].Google Scholar
  13. 13.
    V. M. Aulchenko, O. V. Evdokov, V. D. Kutovenko, et al., “One-Coordinate X-Ray Detector OD-3M,” Nucl. Instrum. Methods Phys. Res. A 603, 76–79 (2009.ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Ancharov, A. Yu. Manakov, N. A. Mezentsev, et al., “New Station at the 4th Beamline of the VEPP-3 Storage Ring,” Nucl. Instrum. Methods Phys. Res. A 470 (12), 80–83 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    “A Rietveld Extended Program to Perform the Combined Analysis: Diffraction, Fluorescence and Reflectivity Data Using X-Ray, Neutron, TOF or Electrons,” https://doi.org/maud.radiographema.eu (September 10, 2016).
  16. 16.
    H. T. Brian, “R-Factors in Rietveld Analysis: How Good Is Good Enough,” Power Diffrac. 21 (1), 67–70 (2006).CrossRefGoogle Scholar
  17. 17.
    D. Fargeot, D. Mercurio, and A. Dauger, “Structural Characterization of Aluminum Metastable Phases in Plasma Sprayed Deposits,” Mater. Chem. Phys. 24, 299–314 (1990.CrossRefGoogle Scholar
  18. 18.
    V. I. Kononenko and V. G. Shevchenko, Physicochemistry of Activation of Aluminum-Based Disperse Systems (Ural Branch, Russian Academy of Sciences, Ekaterinburg, 2006) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. G. Shevchenko
    • 1
    Email author
  • D. A. Eselevich
    • 1
  • Z. S. Vinokurov
    • 2
    • 3
  • A. V. Konyukova
    • 1
  1. 1.Institute of Solid State Chemistry, Urals BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations