Combustion, Explosion, and Shock Waves

, Volume 55, Issue 3, pp 245–257 | Cite as

Recent Advances in Safe Synthesis of Energetic Materials: An Overview

  • D. M. Badgujar
  • M. B. Talawar
  • V. E. ZarkoEmail author
  • P. P. MahulikarEmail author


The development of novel energetic materials with highest possible performance is of current interest. Synthesis of such materials is performed at various stages of pilot plant production all over the world. However, their synthesis involves hazardous production processes. This paper discusses relatively safe and eco-friendly approaches and techniques such as microwave technology and the use of ionic liquids for the synthesis of high-performance energetic materials that can be used as explosives and propellants. In addition, the use of dinitrogen pentoxide as an efficient nitrating agent for the synthesis of energetic materials is considered.


eco-friendly methods energetic materials green chemistry ionic liquids microwave irradiation dinitrogen pentoxide. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH, Weinheim, 2010).CrossRefGoogle Scholar
  2. 2.
    D. M. Badgujar and P. P. Mahulikar, “Advances in Science and Technology of Modern Energetic Materials: An Overview,” J. Hazard. Mater. 151, 289–305 (2008).CrossRefGoogle Scholar
  3. 3.
    G. A. Olah, R. Malhotra, and S. C. Narang, Nitration: Methods and Mechanism, Organic Nitro Chemistry Series, Ed. by H. Fueur (VCH, New York, 1989).Google Scholar
  4. 4.
    Zhang Chi, Li Jie, Luo Yun-Jun, and Zhai Bin, “Microwave-Assisted Azidation Reaction for Rapid Synthesis of Poly(3,3’-bisazidomethyl Oxetane),” J. Energ. Mater. 34 (2), 197–204 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Kshirsagar, V. Gite, D. Hundiwale, and P. Mahulikar, “Microwave Assisted Synthesis and Characterization of Glycidyl Azide Polymers Containing Different Initiating Diol Units,” Centr. Eur. J. Energ. Mater. 12 4), 757–767 (2015).Google Scholar
  6. 6.
    R. Gedye, F. Smith, K. Westaway, H. L. AliBaldisera, L. Laberge and, and J. Rousell, “The use of Microwave Ovens for Rapid Organic Synthesis,” Tetrahedron Lett. 27, 279–282 (1986).CrossRefGoogle Scholar
  7. 7.
    N. N. Romanova, A. G. Gravis, and N. V. Zyk, “ Microwave irradiation in organic synthesis,” Usp. Khim. 74 (11), 1059–1105 (2005).CrossRefGoogle Scholar
  8. 8.
    K. C. Oliver, D. Doris, and M. S. Shaun, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols (Wiley-VCH Verlag GmbH, Weinheim, 2009).Google Scholar
  9. 9.
    B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM, Matthews, 2002).Google Scholar
  10. 10.
    D. I. De Pomerai, B. Smith, A. Dawe, K. North, T. Smith, D. B. Archer, I. R. Duce, D. Jones, and E. P. M. Candidio, “Microwave Radiation Can Alter Protein Conformation without Bulk Heating,” FEBS Lett. 543, 93–97 (2003).CrossRefGoogle Scholar
  11. 11.
    B. J. Maynard, “Sonochemistry,” Chemistry 17–22 (Summer 2000); see also: Handbook of Ultrasonics and Sonochemistry, Ed. by A. Muthupandian (Nature, Springer, 2016).Google Scholar
  12. 12.
    D. M. P. Mingos and D. R. Baghurst, “Tilden Lecture. Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry,” Chem. Soc. Rev. 20, 1–47 (1991).CrossRefGoogle Scholar
  13. 13.
    C. S. Landry, J. Lockward, and A. R. Barron, “Synthesis of Chalcopyrite Semiconductors and Their Solid Solutions by Microwave Irradiation,” Chem. Mater. 7, 699–706 (1995).CrossRefGoogle Scholar
  14. 14.
    S. Komarneni, R. Pidugu, Q. H. Li, and R. Roy, “Microwave-Hydrothermal Processing of Metal Powders,” J. Mater. Res. 10, 1687–1692 (1995).CrossRefADSGoogle Scholar
  15. 15.
    B. Vaidhyanathar, M. Ganguli, and K. J. Rao, “Fast Solid State Synthesis of Metal Vanadates and Chalcogenides Using Microwave Irradiation,” Mater. Res. Bull. 30, 1173–1177 (1995).CrossRefGoogle Scholar
  16. 16.
    D. E. Clark, I. Ahmad, and R. C. Dalton, “Microwave Ignition and Combustion Synthesis of Composites,” Mater. Sci. Eng. A 144, 91–97 (1991).CrossRefGoogle Scholar
  17. 17.
    J. D. Katz, “Microwave Sintering of Ceramics,” Annu. Rev. Mater. Sci. 22, 153–170 (1992).CrossRefADSGoogle Scholar
  18. 18.
    J. D. Houmes and H. C. Zurloye, “Plasma Nitridation of Metal Oxides,” Chem. Mater. 8, 2551–2553 (1996).CrossRefGoogle Scholar
  19. 19.
    M. A. Hiskey, D. E. Chavez, and D. L. Naud, Insensitive High-Nitrogen Compounds, LA-UR-01-1493 Report (Los Alamos National Laboratory, 2001).Google Scholar
  20. 20.
    R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, and M. Petrini, “Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results,” Chem. Rev. 105, 933–972 (2005).CrossRefGoogle Scholar
  21. 21.
    R. Ballini, G. Bosica, D. Fiorini, and A. Palmieri, “Acyclic a-nitro Ketones: A Versatile Class of a-functionalized Ketones in Organic Synthesis,” Tetrahedron. 61, 8971–8993 (2005).CrossRefGoogle Scholar
  22. 22.
    V. P. Sinditskii, V. Y. Egorshev, G. F. Rudakov, and L. D. Sang, “Thermal Behavior and Combustion Mechanism of High-Nitrogen Energetic Materials DHT and BTATz,” Thermochim. Acta 535, 48–57 (2012); DOI: Scholar
  23. 23.
    A. Saikia, R. Sivabalan, B. G. Polke, B. G. Gore, A. Singh, A. S. Rao, and A. K. Sikder, “Synthesis and Characterization of 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): Novel High-Nitrogen Content Insensitive High Energy Material,” J. Hazard. Mater. 170, 306–313 (2009).CrossRefGoogle Scholar
  24. 24.
    J. P. Agarwal “Recent Trends in High-Energy Materials,” Prog. Energy Combust. Sci. 24, 1–30 (1998).CrossRefGoogle Scholar
  25. 25.
    M. D. Coburn, “Picrylamino Substituted Heterocycles II,” J. Heterocycl. Chem. 5, 83–87 (1968).CrossRefGoogle Scholar
  26. 26.
    G. A. Pearse and R. T. Pflaum, “Interaction of Metal Ions with Amidoximes,” J. Amer. Chem. Soc. 81, 6505–6508 (1959).CrossRefGoogle Scholar
  27. 27.
    H. E. Ungade, I. W. Kissinger, A. Narath, and D. C. Barham, “The Structure of Amidoximes. II. Ox-amidoxime,” J. Org. Chem. 28, 134–136 (1963).CrossRefGoogle Scholar
  28. 28.
    A. K. Zelenin and M. L. Trudell, “A Two-Step Synthesis of Diaminofurazan and Synthesis of N-monoarylmethyl and N,N’-diarylmethyl Derivatives,” J. Heterocycl. Chem. 34, 1057–1060 (1997).CrossRefGoogle Scholar
  29. 29.
    A. Gunasekaran, T. Jaychandran, J. H. Boyer, and M. L. Trudell, “A Convenient Synthesis of Diaminogly-oxime and Diaminofurazan: Useful Precursors for the Synthesis of High Density Energetic Materials,” Heterocycl. Chem. 32, 1405 (1995).CrossRefGoogle Scholar
  30. 30.
    R. S. Kusurkar, S. K. Goswami, M. B. Talawar, G. M. Gore, and S. N. Asthana, “Microwave Mediated Fast Synthesis of Diaminoglyoxime and 3,4-diaminofurazan: Key Synthons for the Synthesis of High Energy Density Materials,” J. Chem. Res. 4 (1), 245–247 (2005).CrossRefGoogle Scholar
  31. 31.
    M. B. Talawar, R. Sivabalan, N. Senthilkumar, G. Prabhu, and S. N. Ashtana, “Synthesis, Characterization and Thermal Studies on Furazan- and Tetrazine-Based High Energy Materials,” J. Hazard. Mater. A113, 11–25 (2004).CrossRefGoogle Scholar
  32. 32.
    P. F. Pagoria, S. Lee, A. R. G. Mitchell, and R. D. Schmidt, “A Review of Energetic Materilas Synthesis,” Termochim. Acta 384, 187 (2002).CrossRefGoogle Scholar
  33. 33.
    A. P. Marchand, D. Rajagopal, S. G. Bott, and T. G. Archibald, “Synthesis of 1,3,3-trinitroazetidine Via the Oxidative Nitrolysis of N-p-tosyl-3-azetidinone Oxime,” J. Org. Chem. 60, 1959–1964 (1995).CrossRefGoogle Scholar
  34. 34.
    A. Saikia, R. Sivabalan, G. M. Gore, and A. K. Sikder, “Microwave-Assisted Quick Synthesis of Some Potential High Explosives,” Propell., Explos., Pyrotech. 37 (5), 540–543 (2012).CrossRefGoogle Scholar
  35. 35.
    T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, Oxford, 1984), Vol. 4, Chapter 7.Google Scholar
  36. 36.
    D. M. Badgujar, M. B. Talawar, S. N. Asthana, and P. P. Mahulikar, “Microwave Assisted Facile Synthesis of {1/l,3-bis/l,3,5-tris-[(2-nitroxyethylnitramino)-2,4,6-trinitrobenzene]} using Bismuth Nitrate Pentahy-drate as an Eco-Friendly Nitrating Agent,” J. Hazard. Mater. 152, 820–825 (2008).CrossRefGoogle Scholar
  37. 37.
    H.-J. Liu, Y.-Q. Fan, F. Feng, S.-M. Meng, Y. Guo, Z. Lu, and D.-L. Cao, “Synthesis of 2,4-dinitromidazole by Microwave Heating,” Chin. J. Energ. Mater. 18 (1), 1–3 (2010).ADSGoogle Scholar
  38. 38.
    Y. Zhang, Y. Guo, Y. H. Joo, D. A. Parrish, and J. M. Shreeve, “3,4,5-Trinitropyrazole-Based Energetic Salts,” Chem. Eur. J. 16, 10778–10784 (2010).CrossRefGoogle Scholar
  39. 39.
    P. Yin, C. M. He, and J. Shreeve, “Fused Heterocycle-Based Energetic Salts: Alliance of Pyrazole and 1,2,3-triazole,” J. Mater. Chem. A 4, 1514–1519 (2016).CrossRefGoogle Scholar
  40. 40.
    J. W. A. M. Janssen, C. L. Habraken, and R. Louw, “On the Mechanism of the Thermal N-nitropyrazole Rearrangement. Evidence for a [1,5] Sigmatropic Nitro Migration,” J. Org. Chem. 41, 1758–1762 (1976).CrossRefGoogle Scholar
  41. 41.
    P. Ravi and S. P. Tewari, “Solvent Free Microwave Assisted Isomerization of N-nitropyrazoles,” Propell, Explos., Pyrotech. 38, 147 (2013); DOI: Scholar
  42. 42.
    R. A. Sheldon, “Atom Efficiency and Catalysis in Organic Synthesis,” Pure Appl. Chem. 72, 1233 (2000).CrossRefGoogle Scholar
  43. 43.
    R. A. Sheldon, “E Factors, Green Chemistry and Catalysis: An Odyssey,” Chem. Commun., No. 29, 3352–3365 (2008).CrossRefGoogle Scholar
  44. 44.
    Y. Sasson and G. Rothenberg, Handbook of Green Chemistry and Technology, Ed. by J. Clark and D. Mac-quarrie (Blaclwell, Oxford, 2002), pp. 206–257.Google Scholar
  45. 45.
    N. V. Plechkova, K. R. Seddon, “Applications of Ionic Liquids in the Chemical Industry,” Chem. Soc. Rev. 37, 123–150 (2008).CrossRefGoogle Scholar
  46. 46.
    F. van Rantwijk and R. A. Sheldon, “Biocatalysis in Ionic Liquids,” Chem. Rev. 107, 2757–2785 (2007).CrossRefGoogle Scholar
  47. 47.
    M. K. Potdar, G. F. Kelso, L. Schwarz, C. Zhang, and M. T. W. Hearn, “Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids,” Molecules 20, 16788–16816 (2015).CrossRefGoogle Scholar
  48. 48.
    J. Ranke, S. Stolte, R. Stormann, J. Arning, and B. Jas-torff, “Design of Sustainable Chemical Products-the Example of Ionic Liquids,” Chem. Rev. 107, 2183–2206 (2007).CrossRefGoogle Scholar
  49. 49.
    T. M. Klapotke and G. Holl, “The Greening of Explosives and Propellants Using High Energy Nitrogen Chemistry,” Green Chem. 3, G75 (2001).Google Scholar
  50. 50.
    G. W. Darke, T. W. Hawkins, K. Tollison, L. Hall, A. Vij, and S. Sobaski, Ionic Liquids IIIA: Fundamental, Progress, Challenges and Opportunities, Ed. by R. D. Rogers and K. R. Seddon, ACS Symp Ser., Vol. 901 (Amer. Chem. Soc, Washington, 2005), pp. 259–302.Google Scholar
  51. 51.
    T. W. Hawkins, K. Tollison, L. Hall, and A. Vij, “Experimental and Theoretical Study of 1,5-diamino-4-H-1,2,3,4-tetrazolium Perchlorate,” Propell., Explos., Pyrotech. 30, 156–163 (2005).CrossRefGoogle Scholar
  52. 52.
    Ionic Liquids in Synthesis, Ed. by P. Wasserscheid and T. Welton (Wiley-VCH, Weinheim, 2003).Google Scholar
  53. 53.
    N. N. Makhova, A. B. Sheremetev, I. V. Ovchinnikov, I. L. Yudin, A. S. Ermakov, P. V. Bulatov, D. B. Vinogradov, D. B. Lempert, and G. B. Manelis, “New Aspects of Application of Trinitroethanol Derivatives for the Construction of Pyrotechnic Gas-Generating Ingredients,” in Proc. 35th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2004), pp. 140(1-12).Google Scholar
  54. 54.
    A. B. Sheremetev and I. L. Yudin, “Synthesis of 2-R-2,2-dinitroethanol Orthoesters in Ionic Liquids,” Mendeleev Commun. 15 (5), 204–205 (2005); DOI: Scholar
  55. 55.
    G. Cheng, X. Li, X. Qi, and C. Lu, “Synthesis of RDX Catalyzed by Br?nsted Acidic Ionic Liquids,” J. Energ. Mater. 28 (35) (2010).Google Scholar
  56. 56.
    G. F. Wright, Methods of Formation of the Nitramine Group, its Properties and Reactions. The Chemistry of the Nitro and Nitroso Groups, Ed. by H. F. Feuer (Interscience, New York, 1969), Part 1, Chapter 9.Google Scholar
  57. 57.
    S. Radhakrishnan, M. B. Talawar, and S. Venugopalan, “Synthesis, Characterization and Thermolysis Studies on 3,7-dinitro-l,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT): A Key Precursor in the Synthesis of Most Powerful Benchmark Energetic Materials (RDX/HMX) of Today,” J. Hazard. Mater. 152 (3), 1317–1324 (2008).CrossRefGoogle Scholar
  58. 58.
    Z. He, J. Luo, and C. Lu, “Synthesis of HMX Via Nitrolysis of DPT Catalyzed by Acidic Ionic Liquids,” Centr. Eur. J. Energ. Mater. 8 (2), 83–91 (2011).Google Scholar
  59. 59.
    Organic Energetic Compounds, Ed. by P. L. Marinkas (Nova Sci. Publ, New York, 1996), p. 108.Google Scholar
  60. 60.
    N. N. Makhova, A. S. Ermakov, I. V. Ovchinnikov, et al., “Trinitroetyl Esters of Aryl and Hetaryl Carboxylic Acids as Potential Components for the Construction of Pyrotechnic Gas-Generating Formulations,” in Proc. of the 36th Int. Annu. Conf. of ICT and Int. Pyrotechn. Seminar (Karlsruhe, Germany, 2005), p. 185(1–10).Google Scholar
  61. 61.
    V. D. Nikolaev and M. A. Ishchenko, “Acetals and Esters of Polynitrospirt,” Ross. Khim. Zh. XLI (2), 14–21 (1997).Google Scholar
  62. 62.
    A. B. Sheremetev, I. L. Yudin, and K. Yu. Suponit-sky, “Ionic Liquid-Assisted Synthesis of Trinitroethyl Esters,” Mendeleev Commun. 16 (5), 264–266 (2006).CrossRefGoogle Scholar
  63. 63.
    G. Zhao, T. Jiang, H. Gao, J. Huang, and D. Sun, “Man-nich Reaction Using Aacidic Ionic Liquids as Catalysts and Solvents,” Green Chem. 6, 75–77 (2004).CrossRefGoogle Scholar
  64. 64.
    T. Jiang, H. Gao, B. Han, G. Zhao, Ya. Chang, W. Wu, L. Gao, and G. Yang, “Ionic Liquid Catalyzed Henry Reactions,” Tetrahedron Lett. 45, 2699–2701 (2004).CrossRefGoogle Scholar
  65. 65.
    D. Kundu, R. K. Debnath, A. Majee, and A. Ha-jra, “Zwitterionic-Type Molten Salt-Catalyzed Syn-Selective Aza-Henry Reaction: Solvent-Free One-Pot Synthesis of /3-nitroamines,” Tetrahedron Lett. 50, 6998–7000 (2009).CrossRefGoogle Scholar
  66. 66.
    M. A. Epishina, I. V. Ovchinnikov, A. S. Kulikov, N. N. Makhova, and V. A. Tartakovsky, “Henry and Mannich Reactions of Polynitroalkanes in Ionic Liquid,” Mendeleev Commun. 21, 21 (2011).Google Scholar
  67. 67.
    V. V. Avdonin, G. A. Volkov, P. V. Galkin, et al, “Preparation and Properties of N-fluoro- and N-nitro-bis Derivatives (2,2,2-trinitroethyl) Urea,” Izv. Akad. Nauk, Ser. Khim., No. 8, 1857–1863 (1992) [Bull. Russ. Acad. Sci., Div. Chem. Sci. 41 (8), 1447–1452 (1992)].Google Scholar
  68. 68.
    F. R. Schenck and G. A. Watterholm, “Process for Producing Ammonia Derivatives of Polynitroalcohols,” US Patent No. 2.731.460 (1956); Chem. Abstr. 50, 7125g (1956).Google Scholar
  69. 69.
    H. Feuer and T. J. Kucera, “Preparation of 2,2,2-Trinitroethanol,” J. Org. Chem. 25, 2069–2070 (1960).CrossRefGoogle Scholar
  70. 70.
    C. C. Addison and N. Logan, Developments in Inorganic Nitrogen Chemistry (Elseiver, Amsterdam, 1973), Chapter 2.Google Scholar
  71. 71.
    R. W. Millar, M. E. Coclough, P. Golding, P. J. Honey, C. Paul, A. J. Sanderson, and M. J. Stewart, “New Synthesis Routes for Energetic Materials Using Dinitrogen Pentoxide,” Phil. Trans. Roy. Soc, London A 339, 305 (1992).CrossRefADSGoogle Scholar
  72. 72.
    R. W. Millar, M. E. Coclough, P. Golding, et al., “Novel Synthesis of Energetic Materials using Dinitrogen Pentoxide Nitration,” ACS Symp. Ser. 623, 104–121 (1996).CrossRefGoogle Scholar
  73. 73.
    Q. Wang, F. Shi, X. Zhang, L. Wang, and Z. Mi, “Green Synthesis of Glycidyl Nitrate,” Chin. J. Explos. Propell. 32 (2), 14–16 (2009).Google Scholar
  74. 74.
    F. Shi, Q. Wang, X. Zhang, L. Wang, and Z. Mi, “The Green Synthesis of 1,2-propylene Glycol Dini-trate,” Chin. J. Explos. Propell. 30 (2), 75–77 (2007).Google Scholar
  75. 75.
    G. S. Lee, A. R. Mitchell, P. F. Pagoria, and R. D. Schmidt, “A Review of Energetic Materials Synthesis,” Thermochim. Acta 384, 187–204 (2002).CrossRefGoogle Scholar
  76. 76.
    H. Q. Qian, Z.-W. Ye, and C.-X. L.ii, “Synthesis of CL-20 by Clean Nitration,” Chin. J. Explos. Propell. 29 (3), 52 (2006).Google Scholar
  77. 77.
    M. Malesa and W. Skupinski, “Separation of Ammonium Dinitramide from Reaction Mixture,” Propell., Explos., Pyrotech. 24, 83–89 (1999).CrossRefGoogle Scholar
  78. 78.
    S. Borman, “Advanced Energetic Materials Emerge for Military and Space Applications,” J. Chem. Eng. News 72, 18–22 (1994).CrossRefGoogle Scholar
  79. 79.
    N. G. Hossein, M. Ramin, F. Mohammad, and K. Parviz, “Synthesis of Ammonium Dinitramide by Nitration of Potassium and Ammonium Sulfamate. The Effect of Sulfamate Conterion on ADN Purity,” Iran. J. Chem. Chem. Eng. 27 (1), 85–89 (2008).Google Scholar
  80. 80.
    B.-Z. Wang, Q. Liu, Z.-Z. Zhang, P. Lian, and H.-H. Zhu, “Synthesis of Ammonium Dinitramide from Ethyl Carbamate,” Chin. J. Explos., Propell. 28 (3), 49–51 (2005).Google Scholar
  81. 81.
    Xiao-Feng Cao, Bin-Dong Li, and Min Wang, “An Efficient Method to Synthesize TNAD by the Nitration of 1,4,5,8-tetraazabicyclo-[4,4,0]-decane with N2O5 and Acidic Ionic Liquids,” Chinese Chem. Lett. 25 (3), 423–426 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.High Energy Materials Research LaboratoryPuneIndia

Personalised recommendations