Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 737–746 | Cite as

Blast Load Model Generating Multiple Impulse Curves for Different Scaled Distances

  • B. S. JangEmail author
  • S. H. Lee
  • Y. Lee


This study proposes a blast load model that generates multiple impulse curves with appropriate shapes depending on the scaled distance and, thus, precisely calculates the blast load distribution over the structure surface. The suitability of the proposed model is examined by using the finite element simulation of a blast test with steel plates and comparing the predicted deflections with the measurements. The results reveal that the proposed model accurately calculates the blast load distribution over the structure surface. The predicted deflection profiles of the steel plates are closer to the measured deflection profiles when the proposed model is employed, as compared to the existing models, which produce only a single impulse curve.


impulse curve blast load explosion scaled distance finite element simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Structures to Resist the Effects of Accidental Explosions,” Technical Manual 5–1300 (U. S. Department of the Army, 1990).Google Scholar
  2. 2.
    T. Børvik, A. G. Hanssen, M. Langseth, and L. Olovsson, “Response of Structures to Planar Blast Loads—A Finite Element Engineering Approach,” Comput. Struct. 87, 507–520 (2009).CrossRefGoogle Scholar
  3. 3.
    SIMULIA. Abaqus Analysis User’s Manual, Vol. 1 (2012).Google Scholar
  4. 4.
    G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for DYNA2d and DYNA3d (Army Research Laboratory, 1997).Google Scholar
  5. 5.
    LS-DYNA Keyword User’s Manual, Version 971 (Livermore Software Technol. Corp., 2007).Google Scholar
  6. 6.
    Autodyn User’s Manual (ANSYS Inc.,2013).Google Scholar
  7. 7.
    V. H. Balden and G. N. Nurick, “Numerical Simulation of the Post-Failure Motion of Steel Plates Subjected to Blast Loading,” Int. J. Impact Eng. 32 (1), 14–34 (2005).CrossRefGoogle Scholar
  8. 8.
    G. S. Langdon and G. K. Schleyer, “Deformation and Failure of Profiled Stainless Steel Blast Wall Panels. Pt. III: Finite Element Simulations and Overall Summary,” Int. J. Impact Eng. 32 (6), 988–1012 (2006).CrossRefGoogle Scholar
  9. 9.
    L. Mazurkiewicz, J. Malachowski, P. Baranowski, and K. Damaziak, “Comparison of Numerical Testing Methods in Terms of Impulse Loading Applied to Structural Elements,” Theor. Appl. Mech. 51 (3), 615–625 (2013).Google Scholar
  10. 10.
    K. Sprangher, I. Vasilakos, D. Lecompte, H. Sol, and J. Vantomme, “Numerical Simulation and Experimental Validation of the Dynamic Response of Aluminum Plates under Free Air Explosions,” Int. J. Impact Eng. 54 (1), 83–95 (2003).Google Scholar
  11. 11.
    B. Zakrisson, B. Wikman, and H. Häggblad, “Numerical Simulations of Blast Loads and Structural Deformation from Near-Field Explosions in Air,” Int. J. Impact Eng. 38 (7), 597–612 (2011).CrossRefGoogle Scholar
  12. 12.
    T. A. Hustad and A. L. Lindland, Aluminum Structures Exposed to Blast Loading (Norwegian Univ. Sci. Tech., 2014).Google Scholar
  13. 13.
    K. P. Dharmasena, H. N. G. Wadley, Z. Xue, and J. W. Hutchinson, “Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High Intensity Dynamic Loading,” Int. J. Impact Eng. 35, 1063–1074 (2008).CrossRefGoogle Scholar
  14. 14.
    C. N. Kingery and G. Bulmash, Airblast Parameters from TNT Spherical air Burst and Hemispherical Surface Burst (U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, 1984).Google Scholar
  15. 15.
    F. G. Friedlander, “The Diffraction of Sound Pulses. I. Diffraction by a Semi-Infinite Plane,” Proc. Roy. Soc. London, A 186, 322–344 (1946).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fundamentals of Protective Design for Conventional Eeapons, Technical Manual (U. S. Department of the Army, 1986).Google Scholar
  17. 17.
    S. C. Yuen and G. N. Nurick, “Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates. Pt I: Subjected to Uniform Blast Load,” Int. J. Impact Eng. 31 (1), 55–83 (2005).CrossRefGoogle Scholar
  18. 18.
    G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures,” in Proc. 7th Int. Symp. on Ballistics, (1983), Vol. 54, pp. 541–547.Google Scholar
  19. 19.
    K. Nahshon et al., “Dynamic Shear Rupture of Steel Plates,” J. Mech. Mat. Struct. 2 (10), 2049–2066 (2007).CrossRefGoogle Scholar
  20. 20.
    S. E. Rigby and P. W. Sielicki, “An Investigation of TNT Equivalence of Hemispherical PE4 Charges,” Eng. Trans. 62, 423–35 (2014).Google Scholar
  21. 21.
    G. Cowper and P. S Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams (Brown Univ., U.S.A., 1957).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations