Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 712–719 | Cite as

Thermal Radiation from Water behind the Reflected Shock Wave

  • S. A. Bordzilovskii
  • S. M. Karakhanov
  • K. V. Khishchenko
Article
  • 13 Downloads

Abstract

Thermal radiation from a water layer compressed by an incident shock wave and a shock wave reflected from a LiF window was recorded in the range of incident-wave intensity of 28–36 GPa. Losses of radiant flux at the interfaces were estimated. The temperature of water compressed by one and two shock waves was calculated, and the calculation results are in good agreement with experimental data.

Keywords

water shock wave temperature calculation equation of state double compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Al’tshuler, “The Use of ShockWaves in High Pressure Physics,” Usp. Fiz. Nauk 85 (2), 197–258 (1965).Google Scholar
  2. 2.
    J. M. Walsh and M. H. Rice, “Dynamic Compression of Liquids from Measurements on Strong Shock Waves,” J. Chem. Phys. 26 (4), 815–823 (1957).ADSCrossRefGoogle Scholar
  3. 3.
    L. V. Al’tshuler, A. A. Bakanova, and R. F. Trunin, “Phase Transformations in Shock-Compressed Water,” Dokl. Akad. Nauk SSSR 121 (1), 67–69 (1958).Google Scholar
  4. 4.
    I. I. Sharipdzhanov, L. V. Al’tshuler, and S. E. Brusnikin, “Anomalies in the Shock and Isentropic Compressibilities of Water,” Fiz. Goreniya Vzryva 19 (5), 149–153 (1983) [Combust., Expl., Shock Waves 19 (5), 668–672 (1983)].ADSGoogle Scholar
  5. 5.
    L. P. Volkov et al., “Shock Compressibility of Water at a Pressure of 1 Mbar,” Pis’ma Zh. Eksp. Teor. Fiz. 31 (9), 546–548 (1980).Google Scholar
  6. 6.
    K. Nagayama, Y. Mori, K. Shimada, and M. Nakahara, “Shock Hugoniot Compression Curve for Water up to 1 GPa by using a Compressed Gas Gun,” J. Appl. Phys. 91 (1), 476–482 (2002); DOI 10.1063/1.1421630.ADSCrossRefGoogle Scholar
  7. 7.
    M. H. Rice and J. M. Walsh, “Equation of State of Water to 250 Kilobars,” J. Chem. Phys. 26 (4), 824–830 (1958).ADSCrossRefGoogle Scholar
  8. 8.
    S. B. Kormer, “Optical Studies of Shock-Compressed Dielectrics,” Usp. Fiz. Nauk 94 (4), 641–687 (1968).CrossRefGoogle Scholar
  9. 9.
    M. Cowperthwaite and R. Shaw, “Equation of State for Liquids. Calculation of the Shock Temperature of Carbon Tetrachloride, Nitromethane, andWater in the 100-kbar Region,” J. Chem. Phys. 53 (2), 555–560 (1970); DOI 10.1063/1.1674025.ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The Temperature of Shock-Compressed Water,” J. Chem. Phys. 76 (12), 6282–6286 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    X. J. Peng, F. S. Liu, S. L. Zhang, M. J. Zhang, and F. Q. Jing, “The C(v) for Calculating the Shock Temperatures of Water below 80 GPa,” Sci. China: Phys., Mech. Astron. 54 (8), 1443–1446 (2011); DOI 10.1007/s11433-011-4396-8.ADSGoogle Scholar
  12. 12.
    Ya. B. Zel’dovich, S. B. Kormer, M. V. Sinitsyn, and K. B. Yushko, “Investigation of the Optical Properties of Transparent Substances at Ultrahigh Pressures,” Dokl. Akad. Nauk SSSR 138 (6), 1333–1335 (1961).Google Scholar
  13. 13.
    S. B. Kormer, K. B. Yushko, and G. V. Krishkevich, “Water to Ice VII Phase Transition under Shock Compression,” Zh. Eksp. Teor. Fiz. 54 (6), 1640–1645 (1968).Google Scholar
  14. 14.
    D. H. Dolan, J. N. Johnson, and Y. M. Gupta, “Nanosecond Freezing of Water under Multiple Shock Wave Compression: Continuum Modeling and Wave Profile Measurements,” J. Chem. Phys. 123 (6), 064702 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    D. H. Dolan, M. D. Knudson, C. A. Hall, and C. Deeney, “A Metastable Limit for Compressed Liquid Water,” Nature Phys. 3, 339–342 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    M. Bastea, S. Bastea, J. E. Reaugh, and D. B. Reisman, “Freezing Kinetics in Overcompressed Water,” Phys. Rev. B 75 (17), 172104 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    D. V. Nazarov, A. L. Mikhailov, A. V. Fedorov, et al., “Properties of Optically Transparent Materials under Quasi-Isentropic Compression,” Fiz. Goreniya Vzryva 42 (3), 116–120 (2006) [Combust., Expl., Shock Waves 42 (3), 351–355 (2006)].Google Scholar
  18. 18.
    S. A. Bordzilovskii and S. M. Karakhanov, “Temperature Measurement of Polymethylmethacrylate under Shock Compression,” Vestn. Novosib. Gos. Univ., Ser. Phys., No. 1, 116–122 (2011).Google Scholar
  19. 19.
    P. R. Levashov, K. V. Khishchenko, and I. V. Lomonosov, “Analysis of Typical Shock-Wave Experiments and Calculations of Thermodynamic Properties of Substances via Internet,” AIP Conf. Proc. 849, 353–357 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    K. V. Khishchenko, P. R. Levashov, M. E. Povarnitsyn, and A. S. Zakharenkov, “1D Gas-Dynamic Simulation of Shock-Wave Processes via Internet,” AIP Conf. Proc. 1195, 69–72 (2009); http://www.ihed.ras.ru/rusbank/gassim. ADSCrossRefGoogle Scholar
  21. 21.
    M. B. Boslough, “A Model for Time Dependence in Shock-Induced Thermal Radiation of Light,” J. Appl. Phys. 58 (9), 3394–3399 (1985); DOI 10.1063/1.335756.ADSCrossRefGoogle Scholar
  22. 22.
    V. D. Glukhodedov, S. I. Kirshanov, T. S. Lebedeva, and M. A. Mochalov, “Properties of Shock-Compressed Liquid Krypton at Pressures up to 90 GPa,” Zh. Eksp. Teor. Fiz. 116 (2(8)), 551–562 (1999).Google Scholar
  23. 23.
    I. Sh. Model’, “Measurement of High Temperatures in Strong Shock Waves in Gases,” Zh. Eksp. Teor. Fiz. 32, 714–726 (1957).Google Scholar
  24. 24.
    A. C. Mitchell and W. J. Nellis, “Equation of State and Electrical Conductivity of Water and Ammonia Shocked to the 100 GPa (1 Mbar) Pressure Range,” J. Chem. Phys. 76 (12), 6273–6281 (1982); DOI 10.1063/1.443030.ADSCrossRefGoogle Scholar
  25. 25.
    K. V. Khishchenko, “Temperature and Heat Capacity of Polymethyl Methacrylate behind the Front of Strong Shock Waves,” Teplofiz. Vysok. Temp. 35 (6), 1002–1005 (1997) [High Temp. 35 (6) 991–994 (1997)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. A. Bordzilovskii
    • 1
    • 2
  • S. M. Karakhanov
    • 1
  • K. V. Khishchenko
    • 3
    • 4
  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations