Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 698–703 | Cite as

Optimization of the Binder Formulation to Increase the Energetic Performance of Polynitrogen Oxidizers in Metal-Free Compositions

  • E. M. Dorofeenko
  • S. I. Soglasnova
  • G. N. Nechiporenko
  • D. B. LempertEmail author


The dependence of the specific impulse of metal-free energetic compositions based on high-enthalpy organic oxidizers on the elemental content and enthalpy of formation of the oxidizer and the nature and volume content of the composite binder consisting of hydrocarbon and active components has been studied. At a given volume content of the binder, the specific impulse of compositions based on oxidizers with an oxygen saturation coefficient of 0.6–1.3 can be increased by finding the optimal mass ratio of the hydrocarbon and active components in the binder. The optimal content of the hydrocarbon component increases from 0 to 100% as the oxygen ratio of the oxidizer increases from 0.6 to 1.3.


specific impulse combustion temperature rocket propellant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. J. Powell, “Insensitive Munitions–Design Principles and Technology Developments,” Propell., Explos., Pyrotech. 41 (3), 409–413 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Politzer and J. S. Murray, “High Performance, Low Sensitivity: Conflicting or Compatible,” Propell., Explos., Pyrotech. 41 (3), 414–425 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Zeman and M. Jungova, “Sensitivity and Performance of Energetic Materials,” Propell., Explos., Pyrotech. 41 (3), 426–451 (2016).CrossRefGoogle Scholar
  4. 4.
    P. Pagoria, “A Comparison of the Structure, Synthesis, and Properties of Insensitive Energetic Compounds,” Propell., Explos., Pyrotech. 41 (3), 452–469 (2016).CrossRefGoogle Scholar
  5. 5.
    T. M. Klapotke and T. G. Witkowski, “Covalent and Ionic Insensitive High-Explosives,” Propell., Explos., Pyrotech. 41 (3), 470–483 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Gao and J. M. Shreeve, “Recent progress in taming FOX-7 (1,1-diamino-2,2-dinitroethene),” RSC Adv. 6 (61), 56271–56277 (2016).CrossRefGoogle Scholar
  7. 7.
    G. D. Solodyuk, M. D. Boldyrev, B. V. Gidaspov, and V. D. Nikolaev, “Oxidation of 3,4-diaminofurazan with Some Peroxide Reagents,” Zh. Org. Khim. 17 (4), 861–865 (1981).Google Scholar
  8. 8.
    D. Chavez, L. Hill, M. Hiskey, and S. J. Kinkead, “Preparation and Explosive Properties of Azo-and Azoxy-Furazans,” J. Energ. Mater. 18, 219–236 (2000).CrossRefGoogle Scholar
  9. 9.
    V. P. Sinditskii, M. C. Vu, A. B. Sheremetev, and N. S. Aleksandrova, “Study on Thermal Decomposition and Combustion of Insensitive Explosive 3,3'-diamino-4,4'-azofurazan (DAAzF),” Thermochim. Acta 473 (1/2), 25–31 (2008).CrossRefGoogle Scholar
  10. 10.
    J.-Z. Li, B.-Z. Wang, X.-Z. Fan, H.-J. Wei, X.-L. Fu, C. Zhou, and H. Huo, “Interaction and Compatibility between DAAzF and Some Energetic Materials,” Def. Technol. 9 (3), 153–156 (2013).CrossRefGoogle Scholar
  11. 11.
    E.-C. Koch, “Insensitive High Explosives II: 3,3'-diamino-4,4'-azoxyfurazan (DAAF),” Propell., Explos., Pyrotech. 41 (3), 526–538 (2016).CrossRefGoogle Scholar
  12. 12.
    D. B. Lempert, D. H. Nechiporenko, D. P. Dolganova, and L. N. Stesik, “Dependence of the Specific Impulse of Optimized Compositions of a Solid Composite Propellant (Binder + Metal + Oxidizer) on the Nature of the Metal and Oxidizer,” Khim. Fiz. 17 (7), 114–120 (1998).Google Scholar
  13. 13.
    V. F. Komarov and V. A. Shandakov, “Solid Fuels, Their Properties, and Applications,” Fiz. Goreniya Vzryva 35 (2), 30–34 (1999) [Combust., Expl., Shock Waves 35 (2), 139–143 (1999)].Google Scholar
  14. 14.
    D. B. Lempert, G. N. Nechiporenko, and G. B. Manelis, “Energetic Characteristics of Solid Composite Propellants andWays of Energy Increasing,” Centr. Eur. J. Energ. Mater. 3 (4), 73–87 (2006).Google Scholar
  15. 15.
    A. B. Sheremetev, V. O. Kulagina, N. S. Aleksandrova, D. E. Dmitriev, Yu. A. Strelenko, V. P. Lebedev, and Yu. N. Matyushin, “Dinitro Trifurazans with Oxy, Azo, and Azoxy Bridges,” Propell., Explos., Pyrotech. 23 (3), 142–149 (1998).CrossRefGoogle Scholar
  16. 16.
    V. I. Pepekin, “Detonability of Solid Explosives,” Khim. Fiz. 30 (1), 20–24 (2011).Google Scholar
  17. 17.
    D. B. Lempert and A. B. Sheremetev, “The Energetic Potential of Azo-and Azoxyfurazan Nitro Derivatives as Components of Composite Rocket Propellants,” Khim. Geterotsikl. Soed. 52 (12), 1070–1077 (2016).Google Scholar
  18. 18.
    D. B. Lempert, G. N. Nechiporenko, and G. B. Manelis, “Energetic Performances of Solid Composite Propellants,” Centr. Eur. J. Energ.Mater. 8 (1), 25–38 (2011).Google Scholar
  19. 19.
    B. G. Trusov, “Program System TERRA for Simulation Phase and Thermal Chemical Equilibrium,” in XIV Int. Symp. on Chemical Thermodynamics (St-Petersburg, 2002), pp. 483–484.Google Scholar
  20. 20.
    D. B. Lempert, D. N. Nechiporenko, and S. I. Soglasnova, “Energetic Potential of Compositions Based on High-Enthalpy Polynitrogen Compounds,” Fiz. Goreniya Vzryva 45 (2), 58–67 (2009) [Combust., Expl., Shock Waves 45 (2), 160–168 (2009)].Google Scholar
  21. 21.
    D. B. Lempert, G. N. Nechiporenko, and G. B. Manelis, “Energetic Capabilities of High-Density Composite Solid Propellants Containing Zirconium or Its Hydride,” Fiz. Goreniya Vzryva 47 (1), 52–61 (2011) [Combust., Expl., Shock Waves 47 (1), 45–54 (2011)].Google Scholar
  22. 22.
    D. B. Lempert, “Dependence of Specific Impulse of Metal-Free Formulations on CHNO-Oxidizer's Element Content and Enthalpy of Formation,” Chin. J. Explos. Propell. 38 (4), 1–4, (2015).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. M. Dorofeenko
    • 1
  • S. I. Soglasnova
    • 1
  • G. N. Nechiporenko
    • 1
  • D. B. Lempert
    • 1
    Email author
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations